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Abstract 

Insurance company relies on the estimation of extreme events when handling 
catastrophic event insurance.  We introduce a newly developed method of estimating 
return levels of spatial extremes by taking spatial heterogeneity and smoothness into 
account. We expect the new method can help improve the risk management and 
facilitate better decision-making for catastrophic event insurance. 
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1. Introduction 

Over the past few decades, catastrophe modeling has evolved as an essential component in risk 

management and decision-making process in the property insurance industry. A robust 

estimation of tail losses is particularly important for reinsurers due to the highly skewed and 

correlated nature of claims arising from natural catastrophe events, which significantly increases 

the magnitude of loss for high return periods. Thus, it is crucial for property (re)insurance 

companies to have a model that can generate a full probabilistic distribution of catastrophe losses 

in order to better understand and manage their exposure to natural hazards within their portfolio. 

Since the claims due to natural catastrophe events are geographically correlated and occur 

infrequently compared to other perils such as automobile accidents or liability, the traditional 

actuarial models that utilize past loss experience to estimate future losses can significantly 

underestimate the risk. For instance, the 2011 Thailand Floods is considered to be the worst 

flooding event in at least five decades, with an estimated economic loss of more than 46 billion 

USD. This unprecedented event revealed that the pricing of flood risk in Thailand has previously 
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been inadequate, leading to major revisions in policy coverages and premiums. Thus, it is 

necessary to extrapolate the historical records to account for potential extreme events that may 

not yet have been recorded but are likely to happen in the future of a given time frame (e.g., 1-in-

100 years, 1-in-200 years). This can be achieved through either physical model simulations or 

extreme value analysis using statistical models.  

The exceedance probability (EP) curve, a loss curve representing the probability that the annual 

occurrence or aggregate loss exceeds various levels of loss, is a standard way of expressing the 

outputs of a catastrophe model. The occurrence exceedance probability curve (OEP) is the 

distribution of the largest event loss in a year, and the aggregate exceedance probability curve 

(AEP) is the distribution of the sum of all event losses in a year. EP curves can also be expressed 

in terms of return periods instead of exceedance probabilities, which are simply the inverses of 

each other. For instance, if the probability of experiencing an annual loss greater than $X is 1%, 

then $X can be expected to be exceeded once every 100 years. In general, the loss associated 

with exceedance probability of 𝑝 is said to be the return level or probable maximum loss (PML) 

associated with 1/𝑝 year return period. An example of a OEP and AEP curve is shown in Figure 

1. Note that AEP always has a higher PML than OEP for a given return period.  

The EP curves are standardly obtained from commercial catastrophe models that can be licensed 

from model vendors (e.g., RMS and Verisk). Additionally, insurance companies may choose to 

develop their own models and/or return period estimates to incorporate any potential non-

modelled risks that are not explicitly covered by readily available vendor models on the market.  

 

Figure 1: Example of a OEP and AEP curve 



 

1.1 Uses of EP Curves in Insurance 

The EP curves are used for wide array of business activities in (re)insurance industry such as 

underwriting, pricing, and portfolio management. For instance, an insurance company can 

calculate the probability of experiencing an annual loss that would exceed its survival constraint 

and determine how much reserve they need to hold in order to keep the likelihood of insolvency 

at an acceptable level based on the company’s risk appetite. Alternatively, the company may 

raise premium, increase deductible, or purchase catastrophe bonds or reinsurance to shift the EP 

curve so that the probability that the annual loss exceeds the insurer’s surplus is below a certain 

level. Similarly, the decision to underwrite a new policy can be made by analyzing the impact of 

adding the policy to the portfolio on the EP curve and the return period values.  

Another important use of EP curve is in catastrophe ratemaking and reinsurance pricing. An 

insurance premium is the price that the insurer should charge the policyholders to cover losses, 

expenses, and generate profit for the company. For catastrophe ratemaking, there is an additional 

component called a risk load to reflect the extra cost of capital associated with the highly volatile 

nature of catastrophe losses. An insurance rate is defined as the average premium per exposure 

unit and can be calculated as 

𝑅𝑎𝑡𝑒 = 	
𝑃𝑟𝑒𝑚𝑖𝑢𝑚
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒	

= 	
𝐿𝑜𝑠𝑠 + 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 + 𝑅𝑖𝑠𝑘	𝐿𝑜𝑎𝑑 + 	𝑈𝑊	𝑝𝑟𝑜𝑓𝑖𝑡

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 	

= 	
𝑃𝑢𝑟𝑒	𝑃𝑟𝑒𝑚𝑖𝑢𝑚 + 𝑅𝑖𝑠𝑘	𝐿𝑜𝑎𝑑	𝑃𝑒𝑟	𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 	𝐹𝑖𝑥𝑒𝑑	𝐸𝑥𝑝𝑒𝑛𝑠𝑒	𝑃𝑒𝑟	𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

1 − 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒	𝐸𝑥𝑝𝑒𝑛𝑠𝑒	𝑅𝑎𝑡𝑖𝑜 − 𝑃𝑟𝑜𝑓𝑖𝑡	𝑅𝑎𝑡𝑖𝑜 . 

 The pure premium, or loss cost, is the expected cost of covering losses from claims and is 

typically derived by trending historical loss cost for traditional perils. This component is 

typically replaced by or blended with the expected loss from the EP curve for catastrophe perils. 

For calculating the risk load, a commonly used technique is a method developed by Kreps, which 

expresses the risk load as the expected return on the amount of surplus required to cover the loss 

at a desired return period, as shown in the formula below. 



𝑅𝑖𝑠𝑘	𝐿𝑜𝑎𝑑 = 𝑦 ∗ 𝑆 = 𝑦 ∗ (𝑍 ∗ 𝜎 − 𝑅𝑖𝑠𝑘	𝑙𝑜𝑎𝑑). 

Therefore,we	have  

𝑅𝑖𝑠𝑘	𝐿𝑜𝑎𝑑 = 	 R
𝑦 ∗ 𝑍
1 + 𝑦S ∗ 𝜎, 

where y is the expected yield rate, S is the required surplus, σ is the standard deviation of the loss 

from the EP curve, and Z is the distribution percentage point corresponding to the acceptable 

exceedance probability.  

1.2 Catastrophe Models 

A catastrophe model typically consists of three major components: hazard module, vulnerability 

module, and financial module. When the exposure data containing information about insured 

properties and their location are input to the catastrophe model, the hazard module outputs the 

local intensity of potential future catastrophe events at each site of interest. In a probabilistic 

model, these events are developed by combining historical data with physical, theoretical, and 

statistical models and are each assigned a rate of occurrence and a hazard footprint to represent 

the full range of possible event scenarios that could happen in the future.  

As an illustration, an event set for river flooding may be developed as follows: First, a flood 

frequency analysis can be done by modeling the probability distribution of annual maxima 

discharge from instrumental river flow or rainfall data using extreme value theory. The spatial 

dependency can be captured by modeling the joint distribution of river flows at multiple sites 

using multivariate extreme value models such as copula models (Jongman et al., 2014) or 

conditional models (Heffernan and Tawn, 2004). The flow rate can be linked to a flood intensity 

measure (e.g., water depth) through hydrological and hydraulic modeling, which can be used to 

create a flood hazard map for specified return periods. Next, a synthetic set of flood events, 

defined in terms of the maximum river flow caused by a precipitation event, can be generated 

from a stochastic weather generator or a multivariate statistical model (Schneeberger and 

Steinberger, 2018). Then, an event footprint can be obtained for each event by finding the return 

period of river flow experienced at each site and interpolating the flood severity measure from 

the hazard maps created in the first part. 



For instance, suppose that a hypothetical precipitation event leads to a flow rate of 1200 m3/s at 

location x, which corresponds to a return period of 150 years (RP 150) according to the 

frequency analysis of annual maxima discharge. Suppose that we have hazard maps of flood 

depth corresponding to RP 100 and RP 200 river flow. Then, we can interpolate between the 

values of RP 100 and RP 200 hazard maps to find the flood depth corresponding to RP 150 at 

location x. This process can be repeated for all locations impacted by the event to create 

complete hazard footprints for all events in the event set. An alternative approach is a direct 

simulation of the precipitation events and their footprints by physical modeling, which remains 

computationally challenging to this date. 

Using the event footprints from the hazard module, the vulnerability module translates the 

intensity of the hazard into physical damage of the insured properties along the event footprint 

by modeling the damageability of the properties based on the building characteristics provided in 

the exposure data, which includes information such as their location, number of floors, structure 

type, and building material. The degree of physical damage to a building is expressed as a mean 

damage ratio (MDR), where 0% implies no loss and 100% implies a total loss of the property. 

The mean damage ratio is multiplied to the total insured value (TIV) to convert property damage 

to financial loss.  

After the loss at the location level are determined for each event by the vulnerability module, the 

financial module calculates the loss due to each event by applying the individual policy terms 

and aggregates them over all locations. The output of the financial module is an event loss table 

(ELT) for the entire portfolio, which can be used to obtain the EP curve discussed in the previous 

section. 

1.3 Generating EP Curve from ELT 

There are two main types of uncertainties in a catastrophe model that need to be considered when 

calculating the loss distribution from the ELT: primary and secondary. The primary uncertainty 

is the uncertainty about location, size, and frequency of future catastrophe events and is captured 

by the stochastic event generation process in the hazard model. The secondary uncertainty refers 

to the uncertainty in the loss estimate and comes from the estimation of intensity and damage in 

the hazard and vulnerability module, respectively. The secondary uncertainty can be quantified 



as a distribution of damage ratio around the mean damage ratio, which is propagated through the 

loss calculation steps in the financial module to yield the standard deviation of the loss.  

Table 1 provides an example of an event loss table. An event loss table includes an Event ID, the 

rate of the event, the average loss for the event given that it occurs, independent and correlated 

standard deviations of the loss, and the total amount of limits exposed. The primary uncertainty 

is reflected by rate and mean loss parameters, and the secondary uncertainty is represented by the 

standard deviation parameters. The standard deviation is split into independent and correlated 

components to address the dependency of the loss between the properties when aggregating the 

losses for a multi-location portfolio, where complete correlation implies a perfect linear 

relationship in the degree of damage between two locations and complete independence implies 

that the degree of damage in one location is completely unrelated to the other. For instance, the 

dispersion of loss impact for certain perils and regions may be more widespread and diffuse than 

others, which will result in a lower weight for the correlated component of the standard 

deviation. Also, a portfolio with higher density of exposures will be given a higher weight for the 

correlated standard deviation to reflect the fact that two losses will be more correlated if the 

distance between their locations is smaller.    

OEP curve can be calculated directly from the ELT if the Poisson distribution is assumed for the 

annual frequency of events. For AEP calculation, a standard practice is to simulate the frequency 

and severity of the events using the parameters from the ELT to obtain a year-event loss table 

(YELT), a table of simulated loss by year and event. Table 2 provides an example. After 

applying the appropriate policy terms to each event occurrence in the YELT, the net losses can 

be aggregated for all events in a year to yield a year-loss table (YLT), which can easily be 

converted to an AEP curve. A common choice of probability distribution for simulating the 

number of events is Poisson distribution, and the severity of the event is typically generated by 

simulating a damage ratio from Beta distribution and multiplying it to the total amount of limits 

exposed.  



Table 1: Sample ELT 

Event ID Rate Mean Loss Sdi Sdc Exposure 

1 0.10 500 500 500 10,000 

2 0.10 300 400 800 5,000 

3 0.50 200 300 400 4,000 

 

Table 2: Sample YELT 

Year Event ID Loss 

1 41 10,000 

3 2 300 

3 35 10,000 

… … … 

10,000 2 5,000 

 

2. Return level estimation for spatial extremes 

Return level corresponding to a particular return period, also called probable maximum loss 

(PML), plays a central role in the hazard and the subsequent modules. Since natural hazards are 

often observed in a spatial domain, we proposed a flexible and fast method to estimate spatial 

return levels based on extreme value distribution (Sass et al., 2021). Our method can provide 

accurate return level estimates and meantime improve both the primary and secondary 

uncertainty quantification by considering the heterogeneity and smoothness of spatial return 

levels.   

The first thing to apply extreme value theory is to identify extreme values. Classifying extreme 

values is commonly done in two ways: block maxima and peaks over threshold. The block 

maxima approach divides the dataset into equal periods and chooses the maximum value from 

each period. The generalized extreme value (GEV) distribution is the limiting distribution of 

block maxima and is known to fit accurately for large blocks (Fisher and Tippett 1928; Gumbel 

1958; Coles 2001). The block maxima approach can be wasteful as it only chooses one point 

from each period. In the peaks over threshold approach, a threshold limit is chosen and all points 



exceeding the limit are selected to form the extreme dataset. For a high enough threshold, the 

generalized Pareto distribution (GPD) arises as the limiting distribution to model data over the 

threshold (Pickands 1975; Davison and Smith 1990).  

Many techniques for modeling spatial extreme data have been developed for modeling the site-

wise marginal behavior that is highly related to return level. Characterizing the marginal 

distribution is often done through latent variable models (Coles and Casson 1998; Casson and 

Coles 1999; Cooley, Nychka, and Naveau 2007; Sang and Gelfand 2009). Latent variable models 

introduce spatial variation through Gaussian processes of the parameters of the marginal 

distribution. This is often accomplished via a hierarchical specification of the joint distribution 

followed by Bayesian inference which is computationally intensive and dependent on prior 

distributions. Besides latent variable models, the spatial GEV and spatial GPD are perhaps the 

simplest and fastest approach to modeling the spatial variation of marginal distributions. These 

methods assume marginal independence and only account for dependence by allowing the 

parameters to vary spatially through linear functions.  

2.1 Fused Spatial GEV and GPD Models  

Due to their computational efficiency, the spatial GEV and spatial GPD can be applied to large 

spatial extremes data. Surprisingly, the return level estimation based on spatial GEV is shown to 

be comparable to various max-stable models (Cao and Li 2018). However, if the spatial domain 

of observations is vast, the constant shape parameter usually assumed in the spatial GEV and 

GPD will likely be violated and this may cause deteriorated return level estimation as return 

levels are very sensitive to even a small perturbation of the shape parameter. Furthermore, the 

location and scale parameters in those two models may not simply follow a parametric 

relationship with the available covariates. In such cases, it would be more appropriate to account 

for the spatial heterogeneity of the shape parameter, as well as to allow for flexible forms of 

spatial variability in location and scale parameters. Assume the marginal distribution of extremes 

is GEV with location, scale and shape parameter. We assume all three parameter are spatially 

varying, i.e, they can be denoted as µ(s), σ(s) and ξ(s). 



Unlike Bayesian methods that assume a latent Gaussian process for the parameters, we propose 

to regulate the shape parameter using the fused lasso or fused ridge penalty. To attain flexibility 

of other parameters that are usually restricted to a parametric, often linear, form in the spatial 

GEV and spatial GPD, we further propose to regulate all three parameters in the spatial GEV or 

two parameters in the spatial GPD using a fused lasso or fused ridge penalty. The fused penalty 

has been used to model the clustering pattern or smoothness of spatial data by penalizing 

differences in parameter estimations of nearby locations (Tibshirani and Taylor 2011; Parker, et 

al. 2016; Tansey et al. 2018; Li and Sang 2019).  

Our fused spatial extremes models share the advantage of the traditional spatial GEV and GPD 

models for being applicable to large data sets, however, our models allow for a nonparametric 

representation when describing the spatial variability of the GEV and GPD parameters and thus 

largely improves the return level estimation. Compared to max-stable models that demand a 

dependency structure, our fused spatial extremes models do not require such specifications but 

rather regulates spatial variability through the penalties. Compared to Bayesian implementation 

of max-stable models that are usually computationally intensive for handling large covariance 

matrices, our methods dramatically improve the computational efficiency. Furthermore, the 

proposed models require no stationarity assumption which is commonly made in modeling 

spatial extremes.  

The theory and exposition of the spatial GEV and GPD models with fused penalties can be found 

in Sass et al. (2021). A block bootstrap was used to derive the uncertainty of the return level 

estimates. To demonstrate the method, we show its application to spatial weather extremes.  

2.2 Return Level Estimation for Precipitation Data  

We analyzed climate model output on annual maximum daily precipitation over historical 

(1969–2000) and future conditions (2039–2070) for 2622 sites across the continental United 

States. These data were provided by the North American Regional Climate Change Assessment 

Program (NARCCAP) and can be downloaded from the website http://www.narccap.ucar.edu/ 

index.html. The NARCCAP chose the A2 emissions scenario, which is described in Nakicenvoic 

et al. (2000). The output data were produced using the Geophysical Fluid Dynamics 



Laboratory’s AM2.1 climate model with 50km resolution. NARCCAP provides eight 3-hr 

precipitation rates each day, and we compute the daily total by summing these eight values and 

multiplying by three. We then analyze the annual maximum of the daily precipitation totals from 

the two time-slices separately using the fused spatial GEV model under either ridge or lasso 

penalty.  

The nature of the fused penalty in our fused spatial GEV restricts the parameter estimates and 

thus the return level estimates to only site- wise locations. In order to estimate the return level at 

unknown locations, we interpolated using ordinary kriging. Kriging is a traditional approach for 

spatial data interpolation that exploits the spatial correlation between observations. Cao and Li 

(2018) showed that kriging interpolated return levels performed qualitatively similar as the return 

level estimation based on max- stable models when data follow a max-stable model.  

Given the long time period considered, it is unlikely that the data is stationary across time. To 

account for the non- stationarity, we incorporate a simple linear time trend into the location 

parameter. We model µ(s, t) = α(s) + β(s)t, where α(s) is the spatially varying location parameter, 

β(s) is the spatially varying coefficient associated with the time trend, and t=1for years 1969 and 

2039,up to t=32 for years 2000 and 2070.  

 

Figure 2 . Estimated GEV parameters, 20-, and100-year return level for the historical simulation 
using the fused ridge model. The spatially varying return levels are shown at time t=1 (year 
1969) and the time varying return levels are shown for site 1481, located at the black dot. All 
units are mm/h.  

Figure 2 shows the estimated GEV parameters, 20-, and 100-year return level for the historical 

simulation using the fused ridge model. Since we model the location parameter as a function of 



time, the return level is also a function of time. For illustration purposes, we plot the 20- and 

100-year return level map at time, t = 1, and the time varying return level for a single site, s = 

1481. The results for the fused lasso model are very close to those of the fused ridge so we omit 

the fused lasso plots. The estimated location and scale parameters are highest in the midwest. 

There is a positive trend in the northwest and the largest negative trend is in Virginia. The 

generally positive shape parameter indicates a heavy tailed distribution with no upper bound. The 

20-year return level tends to mimic the high and low estimates of the location and scale 

parameters. The 100-year return level shows an increased precipitation in Ohio and Kentucky 

heavily influenced by the larger shape parameter. However, the negative trend in Ohio and 

Kentucky suggests the return level will decrease when estimated at a later time, for example at t 

= 32.  

2.3 Annual Maximum Temperature Change  

To demonstrate the ability of the fused models to handle even larger datasets, we analyze annual 

maximum temperature data for 8,125 sites across the continental US for the years 1898–1997. 

The data were provided by the National Corporation for Atmospheric Research (NCAR) and is 

available upon request from Dr. Douglas Nychka. Observed data at each station was used when 

available and any missing station values were filled in using spatial statistics to produce a 

complete dataset (Johns et al. 2003). A more detailed description of the data can be found at 

https://www.image.ucar.edu/Data/US.monthly.met/. We split the data into two equal time 

periods of 50 years and estimate the return levels for each time period separately.  

Given the long time period, we model the location parameter as in precipitation data to account 

for nonstationarity, where t = 1 represents years 1898 and 1948, up to t = 50 for years 1947 and 

1997.  



	

Figure 3. Top: estimated 20- and 100- year return level for the years 1898–1947 using the fused 
ridge model. Bottom: estimated change in 20- and 100-year return level between the years 1898–
1947 and 1948–1997 using the fused ridge model. The spatially varying return levels are shown 
at time t = 1 (1898 and 1948) and the time varying return levels are shown for site 2570, located 
at the black dot. All units are in degrees Celsius.  

The return level estimates in the top row of Figure 3 suggest the hottest maxima temperatures are 

in the southwest while the lowest maxima temperatures are along the rocky mountains in 

Colorado and Wyoming. Lower return levels are also expected in the northeast and along the 

Washington coastline. This follows the intuition of what one generally expects when thinking of 

historical temperatures across the United States.  

It is known that average temperatures in the United States since 1900 have warmed on average, 

however it is less clear whether maximum temperatures have changed during this period (Lee, 

Li, and Lund 2014). The bottom row of Figure 3 shows the change in return level estimates 

between the two time periods at time t=1, 1898 and 1948. From the plots we can see the 

temperature has the largest increases in the midwest. At time t = 1, 3,178 of the 8125 stations had 

a decrease in annual maximum temperature for the 100-year return level. Compared to time t = 

50, 6264 of the 8125 stations had a decrease in annual maximum temperature.  

3. Discussion  

Accurate return level estimates of spatial extremes can improve risk management and better 

facilitate decision-making for catastrophic event insurance. We developed fused spatial GEV and 

fused spatial GPD models with varying coefficients under either a ridge or lasso penalty in our 

recent paper, Sass et al. (2021). Our proposed models are flexible in parameterization and thus 



are able to capture the spatial variability of the data better than the spatial GEV and spatial GPD 

with parametric parameter specifications. Our models require no assumption of stationarity and 

are significantly more computationally efficient compared to Bayesian models. The simulation 

study showed that the proposed models outperform spatial GEV, spatial GPD, and max-stable 

models when the marginal GEV and GPD vary spatially. Our models also outperform Bayesian 

models when the spatial extremes process is smooth or when the spatial extremes data show 

nonstationary dependence. While in general Bayesian models yield the most accurate return level 

estimation, their extensive computation may discourage users. The fused spatial models with 

ridge penalty are obviously suitable for smoothly varying marginal behavior, while if the 

marginal GEV or GPD distribution of the spatial extremes is spatially clustered, then the fused 

lasso models are expected to be more appropriate.  

We used precipitation and temperature to demonstrate the ability of the fused spatial extremes 

models to produce practical return level maps for large datasets, but the method can be easily 

extended to the annual maximum discharge or other types of extremes in the hazard module. We 

expect our new method will help insurance industry more precisely manage the catastrophic 

event insurance.   
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