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ABSTRACT

The effect of anthropogenically enhanced greenhouse gas concentrations on the frequency and intensity of

hail depends on a range of physical processes and scales. These include the environmental support of the hail-

generating convective storms and the frequency of their initiation, the storm volume over which hail growth is

promoted, and the depth of the lower atmosphere conducive to melting. Here, we use high-resolution

(convection permitting) dynamical downscaling to simultaneously account for these effects. We find broad

geographical areas of increases in the frequency of large hail (*35-mm diameter) over the United States,

during all four seasons. Increases in very large hail (*50-mm diameter) are mostly confined to the central

United States, during boreal spring and summer. And, although increases in moderate hail (*20-mm di-

ameter) are also found throughout the year, decreases occur over much of the eastern United States in

summer. Such decreases result from a projected decrease in convective-storm frequency. Overall, these re-

sults suggest that the annual U.S. hail season may begin earlier in the year, be lengthened by more than a

week, and exhibit more interannual variability in the future.

1. Introduction

Assessments of how anthropogenic climate change

(ACC) may affect the frequency and intensity of hailfall

in the future require a careful consideration of a range of

physical processes and scales. To begin, one must con-

front the question of how deep convective storms—

which are the hail generators—are themselves impacted

by ACC. This has been addressed most broadly by the

‘‘environmental’’ approach (Brooks et al. 2003), which

exploits the fact that convective-storm organization and

intensity are strongly controlled by ambient (or envi-

ronmental) profiles in temperature, humidity, and wind

within the troposphere. Specific quantifications of these

profiles, namely, convective available potential energy

(CAPE), and bulk vertical wind shear over the 0–6-km

layer (S06), have been coevaluated using global and

regional climate model (GCM and RCM) output.

Within the United States in particular, CAPE tends to

exhibit robust increases over most future time periods

and greenhouse gas (GHG) scenarios [e.g., Trapp et al.

2007; Del Genio et al. 2007; Trapp et al. 2009;

Diffenbaugh et al. 2013; Gensini et al. 2014; see also the

review byAllen (2018)]. This is compelling here because

per parcel theory, the theoretical maximum updraft

speed (wmax) is proportional to CAPE via

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JCLI-D-18-

0740.s1.

a Current affiliation: Cooperative Institute for Mesoscale Mete-

orological Studies, University of Oklahoma, and NOAA/NWS/

Storm Prediction Center, Norman, Oklahoma.

Corresponding author: Robert J. Trapp, jtrapp@illinois.edu

1 SEPTEMBER 2019 TRAP P ET AL . 5493

DOI: 10.1175/JCLI-D-18-0740.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

https://doi.org/10.1175/JCLI-D-18-0740.s1
https://doi.org/10.1175/JCLI-D-18-0740.s1
mailto:jtrapp@illinois.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


w
max

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2CAPE
p

, (1)

and a basic premise in studies of hail formation is that

intense updrafts are required to support the growth of

large hailstones with large terminal velocities (Knight

and Knight 2001).

Hail formation also depends on vertical wind shear,

as has been emphasized recently by Dennis and

Kumjian (2017) (but see also, e.g., Nelson 1983; Ziegler

et al. 1983; Nelson 1987). The effect of shear on an

updraft is to elongate and/or horizontally expand it,

thus providing a larger region for hail embryos to de-

velop, and also a larger volume for subsequent hail

growth (Dennis and Kumjian 2017). In more general

terms, shear also affects the convective morphology,

with large S06 (*20m s21) favoring a supercellular

morphology; in the United States at least, the largest

hail is thought to be generated by supercellular thun-

derstorms (Smith et al. 2012; Blair et al. 2017). Hail

generated by less-organized morphologies, including

multicellular thunderstorms (Ziegler et al. 1983; Nisi

et al. 2016), tends to be smaller (Blair et al. 2017), but

the hailstorm development still requires nonnegligible

S06. These effects are noteworthy because S06 is gen-

erally expected to decrease over most future time pe-

riods andGHG scenarios (e.g., Trapp et al. 2007; Trapp

et al. 2009), albeit with the caveat that large decreases

in S06 tend to occur when CAPE is relatively low

(Diffenbaugh et al. 2013).

Surface hailfall ultimately depends on the tempera-

ture of the air through which the hailstones fall, as well

as the relative humidity of this air: the rate of melting is

slower in drier air (Rasmussen and Pruppacher 1982).

There is evidence of increasing trends in the height of

the melting level (i.e., the height of the 08C isotherm) in

the tropics (Bradley et al. 2009), high-mountain Asia

(Wang et al. 2014), France (Dessens et al. 2015), and

Peru (Schauwecker et al. 2017). GCM projections

evaluated at particular locations also suggest future

increases in the height of the melting level (Dessens

et al. 2015; Schauwecker et al. 2017). It is unclear at

this time if compensating effects of lower relative hu-

midity in the boundary layer might offset this trend.

Given that projected future storm environments often

contain more convective inhibition (Diffenbaugh et al.

2013), they may also contain regions of lower relative

humidity.

The environmental-parameter approach has been

applied to climate model simulations to make pro-

jections of the frequency and intensity of severe con-

vective storms in future climates (e.g., Trapp et al. 2007;

Del Genio et al. 2007; Trapp et al. 2009; Diffenbaugh

et al. 2013). It is important to note, however, that

‘‘severe’’ is a generic category that (in theUnited States)

includes storms that generate tornadoes, large hail, and/or

damaging nontornadic winds. In other words, these

projections are not specifically for hail, in part because

this approach does not explicitly involve any of the mi-

crophysical processes responsible for hail formation

and growth.

Toward that end, Brimelow et al. (2017) developed a

novel method whereby environmental profiles from

coarse (50-km grid lengths) RCMs [via the North

American Regional Climate Change Assessment Pro-

gram (NARCCAP)] were used to drive an offline hail

growth model (HAILCAST; Brimelow et al. 2002) and

thus predict maximum hail size at individual RCM grid

points. The 1D model simulates the growth of hail em-

bryos that are introduced at a thermodynamically de-

duced cloud base. The amount of growth (hail size)

depends on the temperature and supercooled cloud

water within each profile, as well as the strength and

duration of a steady, adiabatic 1D updraft; the updraft

properties are parameterized using CAPE and vertical

wind shear. Brimelow et al. (2017) concluded that the

frequency of hail, especially of relatively small diame-

ters (10mm), will decrease in the late twenty-first century

overmost of NorthAmerica. They further concluded that

when hail does occur, its maximum size will tend to be

larger, suggesting an increase in hail damage potential

under ACC.

Their method, and thus conclusions, are not without

limitations however. The assumption of updraft

steadiness in the HAILCAST model, over a duration

derived from a simple product between CAPE and

vertical wind shear, likely overestimates hail size. The

assumption of updraft existence itself given suffi-

ciently positive parcel buoyancy in a profile (Brimelow

et al. 2002) likely overestimates hail frequency. This

is underscored by the recent pseudo-global warming

(PGW) simulations of Trapp and Hoogewind (2016),

who reaffirm that positive buoyancy is necessary but

not sufficient: Convection initiation is usually predi-

cated on the existence of sufficient parcel lifting to

overcome layers of negative buoyancy [as quantified by

convective inhibition (CIN)], and this process is not

explicitly treated in HAILCAST.

Indeed, this convection-initiation issue has been a pri-

mary motivating factor for implementations of dynami-

cal downscaling at convection-permitting resolutions

(e.g., Trapp et al. 2011). The dynamical-downscaling

implementations of Leslie et al. (2008) and Mahoney

et al. (2012) were specifically focused on hail occur-

rence. Both used horizontal grid lengths of ;1 km,

but over computational domains of limited ex-

tent:;48 3 48 domain over the Sydney basin inAustralia
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(Leslie et al. 2008), and ;68 3 68 domain over the U.S.

state of Colorado (Mahoney et al. 2012). Both also fol-

lowed an event-based simulation methodology, wherein

only select events (individual days) that met some cri-

teria based on coarse-grid output [e.g., extreme rainfall

(Mahoney et al. 2012) or moderate-to-large CAPE and

vertical wind shear (Leslie et al. 2008)] were then further

simulated at high resolution. For example, the Colorado

study of Mahoney et al. (2012) considered only 20 events

(10 during a historical time period, 10 during a future time

period) that occurred during themonths of June–August.

Thus, both studies were limited by a small sample size and

limited spatial extent, and accordinglywere insufficient to

characterize broad changes in hailfall.

Convection-permitting, dynamically downscaled

simulations over the entire year, for 30-yr historical

(1971–2000) and future (2071–2100) time slices, and

with 4-km grid lengths across the entirety of the con-

tiguous U.S. (CONUS) domain, have recently been

presented by Hoogewind et al. (2017). In contrast to

Mahoney et al. (2012) as well as other dynamical

downscaling studies with limited time slices (e.g.,

Gensini and Mote 2014; Prein et al. 2017), the 30-yr

temporal domains used by Hoogewind et al. (2017) have

allowed for quantifications of future changes in the

seasonality of severe-thunderstorm occurrence; the

CONUS spatial domain has also allowed for quantifi-

cations of regional changes in severe-thunderstorm oc-

currence. Herein, we extend the investigation of

Hoogewind et al. (2017), and focus explicitly on the

possible future changes in the seasonality and region-

ality of hazardous hailfall under ACC.

2. Modeling approach and analysis

The simulation methodology employed by Hoogewind

et al. (2017) can be summarized as follows: the Geo-

physical Fluid Dynamics Laboratory Climate Model,

version 3 (GFDL CM3), contribution to phase 5 of the

Coupled Model Intercomparison Project (CMIP5),

which was shown by Diffenbaugh et al. (2013) and

Seeley and Romps (2015) to yield (historically) simu-

lated convective parameters that compare favorably

to reanalyses, has been dynamically downscaled over

historical (1971–2000) and future (2071–2100 under

RCP8.5) time periods. This was accomplished using

the nonhydrostatic ‘‘advanced research’’ core of the

Weather Research and Forecasting (WRF) Model,

version 3.6 (Skamarock et al. 2008). The computational

domain for theWRF simulations has 45 vertical levels, a

horizontal grid point spacing of 4 km, and encompasses

all of the contiguous United States (see Fig. 1). This

single domain can be considered convective-storm

permitting, thus precluding the need to parameterize

deep moist convection. Necessary parameterizations

follow those used in high-resolution WRF Model pre-

dictions of convective weather in the United States

(Kain et al. 2008) (see also Hoogewind et al. 2017). Of

particular relevance to the topic of this research is our

use of the Thompson scheme (Thompson et al. 2008) to

parameterize cloud microphysical processes. The single-

moment Thompson scheme predicts a single, combined

graupel/hail category. The sensitivity of the downscaled

results to the use of this particular scheme is explored in the

appendix.

The dynamical downscaling procedure is based on

Trapp et al. (2011) and involves daily model re-

initializations rather than continuous long-term in-

tegrations. Specifically, the model is integrated over a

30-h period (0600 UTC day 1 to 1200 UTC day 2),

reinitialized, and then integrated/reinitialized over

each subsequent 30-h period. The first 6 h of each day

are used for model ‘‘spinup’’ and discarded, thus

leaving daily 24-h (1200–1200 UTC) sequences to be

analyzed. This procedure limits error growth, allows

for a much more efficient use of computational

resources, and does not adversely affect representa-

tion of the cycle and evolution of convective

precipitation (Trapp et al. 2011). Further discussion

of this procedure is provided by Hoogewind et al.

(2017), as is an evaluation of simulated rainfall over

the historical period.

Hail occurrence is quantified using hourly maxi-

mum column-integrated graupel (GRPLmax; kgm22),

which is a run-time diagnostic variable available inWRF

version 3.6. Although GRPLmax strictly represents a

vertically integrated mixing ratio of the rimed ice cate-

gory, its use in depicting hail size is heuristically

FIG. 1. Computational domain, and subregions discussed in the

text: southern Great Plains (SGP), northern Great Plains (NGP),

Midwest (MW), Southeast (SE), and Northeast (NE). Adapted

from Hoogewind et al. (2017).
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established with auxiliary simulations, as described in

the appendix.Theheuristic analysis yields the following three

categories: moderate or greater (M1) hail, which

corresponds approximately to hail diameters $20mm,

and is assigned at grid points where GRPLmax $

10 kgm22; large or greater (L1) hail, which corre-

sponds approximately to hail diameters $35mm, and is

assigned at grid points where GRPLmax $ 25kgm22;

and very large (VL) hail, which corresponds approxi-

mately to hail diameters$50mm, and is assigned at grid

points where GRPLmax $ 50kgm22.

The categorical hail occurrences are presented via a ‘‘hail-

day’’methodology on a coarsened grid. Specifically, anM1,

L1, or VL hail day is quantified given at least one exceed-

ance per day of the GRPLmax thresholds within a uniform

18 3 18 grid, using hourly model output on the native 4-km

grid (see Hoogewind et al. 2017). This approach follows

from analyses of report-based hail observational data in the

United States and is used to reduce spatiotemporal errors

that are known to occur in the reports (Doswell et al. 2005;

Allen and Tippett 2015). A ‘‘convective-storm day,’’ and

thus the convective-storm frequency, is likewise quantified

given at least one exceedance per day of 40 dBZ (simulated)

radar reflectivity (e.g., Houze et al. 2007) within the 18 3 18
coarsened grid, using hourly model output on the na-

tive 4-km grid.

To show that our coarsened-grid, hail-day methodol-

ogy is credible, we compare quantifications of hail fre-

quency in the downscaled simulations over the period

1986–2000 to quantifications using observational data

over the same period (Fig. 2). The observed annual

mean probability (Fig. 2a) is based on the occurrence of

at least one (NOAA) report of severe hail per day

within a cell on the 18 3 18 grid; upon averaging the daily

probabilities, a Gaussian filter with a spatial smoothing

parameter (s) of 18, or one grid box, is applied. The sim-

ulated annual probability (Fig. 2b) is based on the occur-

rence of L1 hail days from the downscaled simulations.

The peak probabilities from the observational analysis are

comparable to those from the simulations, but the specific

locations of these peaks differ: southern Oklahoma in the

observational analysis versus eastern Kansas in the simu-

lations. The simulations also exhibit a much broader

area of high probabilities than do the observations.

Some of these differences are attributed to biases in the

reported hail observations (Allen and Tippett 2015).

Nevertheless, the general coverage of the observed and

simulated hail-day probabilities exhibit sufficient

agreement over the central United States to provide

confidence in examining future minus historical differ-

ences. Further confidence is provided by the favorable

comparison of the modeled distribution to the envi-

ronmentally derived hail estimates of Allen et al. (2015).

3. Future changes in hail occurrence by estimated
hail size

We begin with differences in monthly hail occur-

rence between the late twenty-first-century future pe-

riod and late twentieth-century historical period.

Figure 3 indicates statistically significant future

increases1 in the days with L1 hail for each month of

the year over the CONUS (see also Fig. S1 in the online

supplemental material). The largest mean increases in

L1 hail (of 6 days month21) occur in July in the

northern Great Plains (see Fig. 1), but mean increases

of;4 days month21 are found over broad geographical

areas during May–August. Statistically significant fu-

ture increases in the frequency of VL hail days are also

projected over the central United States during the

spring and summer months (Fig. 4a). The largest mean

increases of;2 VL days month21 again occur in July in

the northernGreat Plains. Finally, the future frequency

of M1 hail days (Fig. 4b) exhibits considerable tem-

poral and geospatial variability. Over roughly the

eastern half of the CONUS, statistically significant in-

creases of ;3–5 M1 hail days month21 during April–

May are supplanted by comparable or larger decreases

during June–July. Within the western half of the

CONUS, and in particular the western portions of the

southern and northern Great Plains, increases of more

than 6 M1 hail days month21 are prominent in June–

August. Note that if we exclude days that also had large

and/or very large hail, and thus consider only M rather

than M1 hail days (Fig. S2), the geographical areas of

frequency increases (decreases) become smaller (larger),

but the basic conclusions about this category of hail are

the same. Similarly, a consideration of only L days rather

than L1 hail days (Fig. S3) reduces (enhances) the

FIG. 2. Annual probability (in percent) of (a) severe hail days,

based on hail reports, and (b) L1 hail days, from the historical

simulations. Both are based on data from the period 1986–2000,

and are analyzed on a 18 3 18 grid.

1 In all spatial analyses used in this study, differences between the

respective means over the future and historical periods are evalu-

ated locally using a two-tailed t test at a 5% significance level, with

the null hypothesis that the means are the same; field significance is

evaluated using the false discovery rate (FDR) methodology

(Wilks 2016) with a 5% global significance level.
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geographical areas of frequency increases (decreases),

but does not change the basic conclusions about this

category of hail.

As can be inferred from Figs. 3 and 4, the mean

annual cycles of hail days for our three categories

exhibit enhanced future probabilities of hail across

the CONUS, throughout the year (Fig. 5a). Consistent

with Brimelow et al. (2017), the largest increase is in

the VL hail category (Fig. 5a, third column), with a

mean peak historical probability of 0.52 in mid-July

increasing to a mean peak future probability of 0.90 in

late July. We note here that the mid-July peak in VL

hail is later in comparison to the early-June peak in

observed 5-cm hail occurrence (Allen and Tippett

2015). This is perhaps explained by the dominance of

the northern Great Plains contribution to the VL hail

cycle; the observed hail occurrence in the northern

Great Plains exhibits a mid-July peak. The broader

peak in the L1 hail cycle is well in line with that for all

observed hail.

The enhanced future probabilities suggest a future

lengthening of the ‘‘hail season.’’ This can be quan-

tified in terms of total cumulative hail days over the

year, which show a 7%, 21%, and 146% increase, re-

spectively, in the mean number of future M1, L1, and

VL hail days across the CONUS (Fig. 6). Part of the

lengthening owes to an earlier start to the season.

Here we adapt the method of Brooks et al. (2014) and

consider the nominal start of the season to be the date

on which 10% of the mean annual cumulative grid

FIG. 3. Change (future minus historical) in mean days per month of large or greater (L1) hail. Black dots (black3s) show locations where

the local (global) hypotheses identical means are rejected at the 0.05 level, as determined via a two-sided t test.
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points (a proxy for mean total annual reports) is at-

tained (see Fig. 5b). By this method we find a 16-, 9-,

and 9-day earlier start to the M1, L1, and VL hail

seasons, respectively, under ACC (Fig. 5b). There is

significant regional variation to these cumulative days

and grid points, but over all regions, the total numbers

of cumulative days, and of cumulative grid points,

exhibit increases in the future (Table 1).

FIG. 4. As in Fig. 3, but for (a) very large (VL) hail and (b) moderate or greater (M1) hail.
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Unsurprisingly, the annual cumulative hail days

comprising the 30-yr means in Fig. 5a exhibit in-

terannual variability. A subjective assessment of the

time series of annual hail days over the CONUS (Fig. 7)

suggests that the interannual variability over the future

period is larger than that over the historical period se-

ries, perhaps consistent with the documented variability

in precipitation in general (e.g., Pendergrass et al. 2017).

Following Tippett (2014) we quantify the variability in

terms of a volatility, which is the standard deviation of

FIG. 6. Mean accumulation of hail days over the year, for M1, L1, and VL hail across the CONUS. Shading represents 95% CI from

10 000 bootstrapped resamples.

FIG. 5. (a)Mean annual cycle of hail-day probability forM1, L1, andVL hail. (b)Mean accumulation of gridpoint occurrences of daily

M1, L1, andVL hail. Both apply to CONUS. Shading represents 95%CI from 10 000 bootstrapped resamples. Blue (red) vertical lines in

(b) indicate the mean starting date of the hail season for the historical (future) period.
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the difference D between the number N of hail days in

consecutive years (i):

D
i
5N

i
2N

i21
. (2)

The volatility over the historical and future periods

are 10.6 and 16.6 days, respectively. Although failing an f

test for statistical significance, the volatility over the

future period is nonetheless larger than that over the

historical period. An evaluation of the geospatial vola-

tility difference shows mostly future increases of a few

days, with isolated decreases of ;1 day over southern

and northern Great Plains (Fig. S4). We conclude that

the annual volatility of L1 hail generally increases in the

future, and that this increase appears to be spread over

the CONUS.

4. Possible physical mechanisms

Although the physical mechanism(s) for the increase

in the hail-day variability and volatility under ACC is

unclear (as is also the mechanism for tornado volatility;

Tippett 2014), we can offer possible physical explana-

tions for the changes in the hail-day means with the

dynamical downscaling approach. Consider first the

pronounced decreases in M1 (and M) frequency, es-

pecially over the eastern half of the CONUS (Figs. 4b

and S2). As noted in section 1, the argument often in-

voked to explain such a reduction in hailfall—

especially of relatively small hail—under ACC is that an

increase in the height of the melting level would allow

for a deeper layer for potential melting of falling hail-

stones (see also Zou et al. 2018). Although the extent of

melting also depends on the environmental humidity

(Rasmussen and Pruppacher 1982), here we analyze

only the environmental temperature. Figure 8 shows

that the mean melting-level height in our downscaling

simulations2 does indeed increase in the future over the

CONUS, albeit with geographical and seasonal varia-

tions. However, as evidenced by the lack of a geospatial

relationship between the fields in Fig. 4b (see also

Fig. S2) and Fig. 8, it does not appear that increases in

melting-level height have a significant impact on the

decreases in M1 (and M) hail, nor on changes in L1
and VL hail. Geospatially, the melting-level increases

and M1 (and M) hail decreases also do not correspond

well to increases in rainfall frequency, as would be

expected if enhanced hail melting occurs (Fig. 9; see

also Fig. S5). To address the possibility that the mean

melting-level height changes might not be representa-

tive of changes on days when the hail occurs, we have

also constructed 2D histograms of melting level height

FIG. 7. Time series of annual number of L1 hail days over the

CONUS, during future and historical periods.

TABLE 1. Percentage future changes in cumulative days, and cumulative daily grid points, ofM1, L1, andVL hail, for theCONUS, as well

as for the SGP, NGP, MW, SE, and NE regions (see Fig. 1).

Region M1 days L1 days VL days M1 points L1 points VL points

CONUS 7% 21% 146% 31% 100% 605%

SGP 8% 21% 184% 21% 71% 476%

NGP 27% 49% 302% 73% 157% 882%

MW 20% 37% 185% 26% 85% 476%

SE 5% 25% 311% 11% 86% 812%

NE 37% 84% 828% 53% 178% 1628%

2 The melting level (height of 08C) in each grid column is de-

termined via linear interpolation of the two model heights (mean

sea level) where temperature is above and below 08C. For our

spatial analyses, we used the melting level at 1800 UTC. This

particular time was chosen because it typically precedes the initi-

ation of deep convection, thus allowing us to mitigate the effects of

ongoing convective storms on the vertical temperature profile; the

basic conclusions about the effects of melting level are, however,

relatively insensitive to the specific time of analysis, provided that it

is within the 3–6 h after local sunrise.
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versus mixed-layer (ML) CAPE (Fig. 10). These his-

tograms clearly indicate that the changes in melting

level height shown in Fig. 8 do not depend on changes

in MLCAPE. In other words, the melting level height

of an intense convection/hailstorm environment is well

represented by the melting level height across all en-

vironments, and accordingly, the mean melting level

changes portrayed in Fig. 8 should also be valid on days

of hail occurrence. We conclude therefore that, al-

though the melting level height increases might explain

FIG. 9. As in Fig. 3, but for mean days per month of daily pre-

cipitation exceeding 10mm.

FIG. 8. Mean change (future minus historical) in the height (m) of

the melting level (08C).
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reductions in small hail and perhaps in M hail in some

regions of the United States, they do not appear to

explain well the specific reductions in M (and M1) hail

throughout parts of the Midwest and eastern United

States.

Noting that hail generationfirst requires the existenceof a

convective storm, it is possible that some of the reduction in

M (and M1) hail is due to a reduction in convective storm

frequency itself. Storm (or more precisely, convective core)

frequency can be represented explicitly in our simulations

using daily grid point occurrences of 40 dBZ (simulated)

radar reflectivity (e.g., Houze et al. 2007). We find that

convective storm frequency decreases generally throughout

the CONUS during the summer months (Fig. 11). This less

frequent convection initiation is consistent with the pro-

jected increases in CIN (Hoogewind et al. 2017), although

CIN alone is not a perfect predictor of initiation (Trapp and

Hoogewind 2016). It is also consistent with a reduced fre-

quency of rainfall in summer (e.g., Fig. 9); that is, decreases

(increases) in rainfall frequency are mostly a manifestation

of decreases (increases) in convective-storm frequency.

(Some realization of this relationship is already appearing in

the observational data; see Trapp and Hoogewind 2018).

Thus, we conclude that over the CONUS, the reduction in

M and M1 hail owes at least in part to a reduction in the

initiation of deep convective storms.

Now we consider possible physical explanations for

increases in L1 andVLhail frequency (e.g., Figs. 3 and 4).

As noted already, projected increases in CAPE sug-

gest an increase in updraft intensity that in turn

would support (but of course, not guarantee; e.g., see

Kumjian et al. 2019) the growth of larger hailstones.

Although updrafts under future climates fall short of the

wmax 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2CAPE
p

prediction (Trapp and Hoogewind

FIG. 10. 2D histograms of MLCAPE vs melting level, which are constructed using data from every grid point east of longitude 1058W
where MLCAPE exceeds 500 J kg21. The histograms specifically are differences (future minus historical) in the joint frequencies of

MLCAPEandmelting level. Stippling indicates where themonthly distributions are statistically significantly different from one another at

the 95% confidence level using the Wilcoxon rank-sum test.
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2016), Hoogewind et al. (2017) have indeed demon-

strated a higher future occurrence of more intense up-

drafts in these simulations. Higher CAPE also supports

wider updrafts, as does stronger vertical wind shear (e.g.,

Marion and Trapp 2019): both environmental changes

would provide a larger region for hail embryos, and

also a larger volume for subsequent hail growth (e.g.,

Dennis and Kumjian 2017). To assess whether updraft

sizes exhibit future increases given the projected in-

creases (decreases) in CAPE (S06), and then to assess

whether the size changes could help explain the higher

frequency of L1 and VL hail, we have explicitly com-

puted the size of all updraft cores in the high-resolution

simulations.3 We find that updrafts are relatively wider

in the future, and that the population fraction of these

large updrafts increases into the warm season (Figs. S6–

S8). If we require that the updrafts contain M1 hail, we

additionally find that hail-generating updrafts are also

relatively wider (and more numerous) in the future

(Fig. 12). It is possible that such wider updrafts could be

indicative of multicellular storms ormesoscale convective

systems, which are less likely to generate large hail; it is

also not a necessary condition for large-hail generation

that the updraft be wide. With these caveats, we conclude

that the environmental changes under ACC allow for

future convective updrafts that are wider and more in-

tense, and thus provide favorable conditions for the

growth of more L1 and VL hail.

5. Summary and conclusions

Herein we used an unprecedented set of convection-

permitting, dynamically downscaled simulations over the

entire year, from 30-yr historical (1971–2000) and future

(2071–2100) time slices, and with 4-km grid lengths across

the entirety of theCONUSdomain, to investigate possible

changes in the seasonality and regionality of hazardous

hailfall underACC.These simulations indicate that future

hail seasons in the United States may begin earlier in the

year, be slightly longer, and exhibit more interannual

variability. The simulations also indicate that such

changes are distributed over broad geographical areas,

with details that depend on hail size. In particular, future

increases in the frequency of large hail (*35-mm di-

ameter) are depicted over much the CONUS, during all

four seasons; the largest increases occur during July and

within the northern Great Plains. Future increases in

very large hail (*50-mm diameter) occur mostly during

FIG. 11. As in Fig. 3, but for mean days per month of deep-

convective core occurrence, based on existence of 40 dBZ simu-

lated radar reflectivity factor at a height of 1 km AGL.
3Updraft area is determined from the hourly vertical velocity at

the 500-hPa level, on the native (4 km) grid. We chose 500 hPa

because it reasonably represents the midlevel of most deep con-

vective storms across the CONUS. The area itself is given as the

number of contiguous grid points where the vertical velocity

exceeds a threshold, here chosen to be 10m s21. The basic con-

clusions drawn from updraft area based on a 10 or 20m s21

threshold are the same.
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boreal spring and summer within the central United

States. And, although future increases in moderate hail

(*20-mm diameter) are indicated throughout the year,

future decreases occur over much of the eastern United

States in summer. Such decreases appear to be due

primarily to a decrease in convective-storm frequency.

To summarize, the indication during summer is of fewer

overall days of convective storms and thus fewer hail-

storm days, but of larger hail on days when convective

storms do occur; the indication during spring is of more

days overall of convective storms, and of more days of

moderate, large, and very large hail.

This hail-hazard scenario emerging from the convection-

permitting dynamical downscaling is, in essence, consis-

tent with what can be inferred from studies relying only

on environmental proxies derived from RCM and GCM

simulations [e.g., see the review by Allen (2018)]. How-

ever, the lack of explicit control of convective-storm oc-

currence in these studies likely introduces nonuniform

biases to the inferred hail frequency (Hoogewind et al.

2017). A similar statement can be made about the

hail frequencies determined by Brimelow et al. (2017),

who employed a novel hail growth model, but still pa-

rameterized updraft occurrence using environmental in-

formation supplied by NARCCAP.

Our conclusions are not without limitation, how-

ever. For example, they are based on a single model

realization (i.e., a single GCM driver and a single set

of model physical parameterizations, which includes

a single-moment microphysical scheme with a single

rimed hydrometeor category). This is the compromise

made for the sake of high (convection-permitting)

resolution (see also Gensini and Mote 2015; Prein

et al. 2017). Some testing (see the appendix) shows

that our overall results do not appear to depend

heavily on the choice of microphysical parameteriza-

tion (although further investigation is needed with

double-moment schemes that explicitly predict sepa-

rate graupel and hail categories). Nevertheless, we

lack the ability to quantify the uncertainty that is af-

forded with an ensemble of coarse-resolution GCMs

or RCMs. On the other hand, such coarser-resolution

(non-convection-permitting) simulations, and ap-

proaches that explicitly use their data, lack the ability

FIG. 12. Group bar chart of hail-generating updraft sizes over the historical (HIST) and future (FUT) time periods. Here, size is

given in terms of number of contiguous grid points where both the M1 hail criterion is satisfied and w $ 10 m s21 at the 500-

hPa level.
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to confidently quantify convective storm frequency,

which we show is a key limiter in hail frequency. The

possibility that convective and microphysical pro-

cesses that are poorly resolved here could also con-

tribute to changes in hail frequency awaits future

work with much finer grids.

Such finer grids will also be necessary to address

changes in hail swaths and hail accumulations from in-

dividual storms under ACC. One of our hypotheses is

that hail swaths will be relatively wider in the future, as

might be expected given increases in the area of hail-

generating updrafts (Fig. 11). While traditional dynam-

ical downscaling could be an appropriate means of

addressing this and other hypotheses, we have chosen

instead to pursue event-level PGW applications (e.g.,

Trapp and Hoogewind 2016), which allows for detailed

analyses of individual storm characteristics. This work is

ongoing, and will be described in a future publication.
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APPENDIX

Quantification of Hail Occurrence with a Bulk
Microphysical Scheme

The top 10 daily occurrences of large GRPLmax

values ($25kgm22) over all days within the 30-yr his-

torical and 30-yr future periods were identified in the

downscaling simulations. Each of these 20 days was

then resimulated using a more recent version (3.8) of

WRF, to take advantage of the inline version of

HAILCAST (i.e., WRF-HAILCAST; Adams-Selin

and Ziegler 2016) and its predictions of maximum and

average hail diameter at the ground (HCASTmax and

HCASTavg, respectively); we essentially used these

variables as ‘‘truth’’ in the 20 auxiliary simulations,

with the acknowledgment that the predicted hail di-

ameters from WRF-HAILCAST have varying degrees

of accuracy as compared to observations (Adams-Selin

et al. 2019). We then evaluated daily occurrences based

on a range of thresholds of GRPLmax as well as

FIG. A1. Scatterplot of GRPLmax vs HCASTmax across the 20

auxiliary simulations, for three pairs of variable thresholds:

GRPLmax $ 10 kgm22 and HCASTmax $ 20mm, GRPLmax $

25 kgm22 and HCASTmax$ 35mm, and GRPLmax$ 50 kgm22

and HCASTmax $ 50mm.
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HCASTmax, and found pairs of GRPLmax and

HCASTmax occurrences that exhibited the largest

linear correlation and were closest to one-to-one.

Figure A1 demonstrates high and statistically signifi-

cant (at the p 5 0.05 level) correlations between grid

point occurrences of GRPLmax and HCASTmax (as

well as of HCASTavg), across all 20 auxiliary simula-

tions, for the following three pairs of variable thresholds:

GRPLmax $ 10kgm22 and HCASTmax $ 20mm,

GRPLmax $ 25kgm22 and HCASTmax $ 35mm,

and GRPLmax$ 50 kgm22 and HCASTmax$ 50mm.

The values of these HCASTmax thresholds (and thus

their GRPLmax counterparts) are used to define the

categories of moderate or greater (M1) hail, large or

greater (L1) hail, and very large (VL) hail.

The spatial locations for these respective occurrences

in the 20 simulations are shown in Fig. A2 and generally

support our usage of GRPLmax from the Thompson

scheme, especially for the M1 and L1 hail categories.

For the VL hail, the magnitude of HCASTmax$ 50mm

occurrences is clearly much higher than the correspond-

ing GRPLmax $ 50kgm22 occurrences. We attribute

this magnitude mismatch to the fact that in WRF-

HAILCAST, the growing hailstones accrete all avail-

able supercooled liquid water, without consideration of

its depletion by entrainment or other precipitation, im-

plying that the predicted sizes are upper limits (and may

in some cases be overestimates).

To address concerns that, as a vertically integrated

quantity, GRPLmax may be representing graupel/hail

aloft rather than at the surface, we compared fields of

graupel/hail mixing ratio at the lowest model level to the

fields of GRPLmax and also HCASTmax. A represen-

tative example of this analysis indicates that the fields

are indeed comparable for our GRPLmax thresholds

(Fig. A3). If the GRPLmax thresholds are set to lower

values (e.g., GRPLmax $ 5 kgm22), the GRPLmax

fields do often lack a corresponding surface pattern in

the graupel/hail mixing ratio, which is why we did not

include this lower threshold in our analyses.

As just illustrated, a key advantage of our dynamical

downscaling approach is that it allows resimulation of

individual days, which are independent of each other in

the downscaled simulations (but not in the GCM

driver). We can exploit this ability and consider possible

sensitivities of our downscaling results to the choice of

microphysical parameterization. Specifically, we resi-

mulated the 20 days of GRPLmax$ 25kgm22 using the

Morrison scheme (Morrison et al. 2009), which is a

double-moment scheme (predicting both mass and

FIG. A2. Spatial occurrences (days) where the respective GRPLmax and HCASTmax

thresholds are met: GRPLmax $ 10 kgm22, GRPLmax $ 25 kgm22, and GRPLmax $

50 kgm22; and HCASTmax $ 20mm, HCASTmax $ 35mm, and HCASTmax $ 50mm.
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number of hydrometeors at each grid point) and ex-

plicitly predicts a hail mixing ratio. The scatterplots in

Fig. A4 reveal statistically significant correlations be-

tweenGRPLmax occurrences for each of the same three

thresholds (10, 25, and 50kgm22), albeit with increases

in scatter (p values) for increases in threshold. Similarly,

the spatial analyses of the GRPLmax occurrences show

favorable agreement across the two microphysical

schemes (Fig. A5), thus providing further confidence

that the downscaling results are not unique to the use of

the Thompson scheme.

FIG. A4. Scatterplot of GRPLmax from simulations with

Thompson (TH) microphysics vs GRPLmax from simulations with

Morrison (MO) microphysics across the 20 auxiliary simulations,

for 3 GRPLmax thresholds: GRPLmax$ 10 kgm22, GRPLmax$

25 kgm22, and GRPLmax $ 50 kgm22.
FIG. A3. Example comparison between fields of maximum

simulated radar reflectivity (REFLmax; dBZ), HCASTmax

(mm), and GRPLmax (kgm22), in a historical event at 2100 UTC

4 Aug 1987.
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