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Executive Summary 

This paper focuses on three topics that represent current challenges in risk analysis of physical 

assets, namely, (1) the development of a systematic approach for creating digital twins of physical 

assets, (2) the modeling of the spatiotemporal evolution of hazards, and (3) the modeling of the 

time-varying vulnerability of interdependent physical assets. 

Accurate risk analysis requires representative mathematical models of physical assets.  These 

mathematical models create digital twins of reality.  Data needed to create the digital twins are 

typically unstructured and incomplete.  Current work lacks a systematic approach for processing 

and augmenting data to, for example, model assets where data are missing or capturing the 

physical assets’ future developments and conditions (e.g., future expansions of infrastructure 

and the effects of aging and deterioration).  A significant challenge in developing the digital twins 

is deciding the boundary and resolution of the virtual representation and selecting models for 

required analyses from multiple candidate models, each of different computational cost and 

accuracy.  We developed a systematic approach for creating the digital twins of physical assets 

for risk analysis.  Our approach considers the constraints in computational resources, quantifies 

all the relevant sources of uncertainty, and refines the computational models based on their roles 

in predicting the consequences of various risks. 

Risk analysis requires accurate modeling of the spatiotemporal variability of hazards.  While 

seismic hazards have received significant attention in past decades, other hazards such as 

hurricanes and wildfires, which have recently caused substantial damages and insured losses, 

have received less attention.  Thus, there is a clear need to consider the frequency and severity 

of these hazards and, when appropriate, expand the methodologies developed for seismic 

hazards to them.  Besides, many parts of the world are likely to face multiple hazards.  These 

hazards may interact with one another, and their combined effects on physical assets can lead to 

increased vulnerability to future hazards.  Accurate hazard modeling requires accounting for the 

temporal aspects of hazards.  For example, climate change is impacting the likelihood of 

occurrence and the magnitude of weather-related perils.  The spatial variability of hazards’ 
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intensity plays a significant role in modeling direct physical damages to physical asset portfolios 

and capturing indirect losses due to cascading effects.  We developed physics-based models for 

three specific hazards while capturing the spatiotemporal evolution of the hazards’ intensity 

measures.  These hazards are earthquake main shock-aftershocks sequences, storm surges, and 

wildfires.  The developed models are transportable globally and can be used for long-term hazard 

predictions and preparedness.  The models can also be updated using real-time data from 

unfolding events; hence, they can facilitate short-term decision-making processes to optimize 

the management of resources needed in the immediate aftermath of a natural disaster. 

Current modeling, design, maintenance, recovery, financing principles, and regulatory 

standards usually focus on physical assets in isolation and do not consider hazards’ interactions, 

infrastructure interdependencies, and time-varying vulnerability of physical assets due to aging 

and deterioration.  Aging and deterioration can considerably increase the vulnerability of physical 

assets like infrastructure and reduce their service lives.  These adverse effects also increase the 

likelihood of prolonged post-disaster recovery and lack of access to infrastructure services.  

Interdependencies among different physical assets exacerbate the cascading effects.  For 

example, pumping stations in potable water infrastructure may stop functioning due to damages 

to the supporting electric power infrastructure.  Modeling interdependencies of physical assets 

is critical in predicting direct and indirect incurred losses due to the lack of access to 

infrastructure services.  Failure to capture the combined effects of deterioration and 

interdependencies leads to significant underestimation of actual incurred losses due to hazards.  

We developed a rigorous physics-based approach to model the time-varying vulnerability of 

interdependent physical assets.  The developed models provide information about direct 

damages to physical assets due to multiple hazards, cascading effects of infrastructure’s 

reduction or loss of functionality, and post-disaster recovery of physical assets.  The developed 

models are also customizable to the specific conditions of physical assets.  Examples of these 

conditions include physical assets’ age and deterioration level, environmental conditions that 

affect their deterioration, repair and maintenance history, service demand on infrastructure, and 

post-disaster recovery resources (e.g., budget, skilled labor, material.)  
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1. Introduction 

Decision-making is often based on information about risks associated with possible courses of 

action or possible outcomes (Bedford and Cooke 2001; Gardoni and Murphy 2014).  Risk analysis 

requires defining all consequences relevant to the decision-making process and quantifying their 

probabilities (Gardoni et al. 2016a).  Managers of physical assets, administrative policymakers, 

and insurance companies often must make decisions about significant investments that involve 

predicting the extent and consequences of damages to physical assets due to multiple hazards 

with an eye to both the near term and the distant future (Gardoni and LaFave 2016).  Events such 

as earthquakes, hurricanes, or wildfires bring wide-ranging direct and indirect consequences that 

must be identified and considered in an effective risk analysis.  For example, direct consequences 

may include casualties and damages to physical assets, inventories, and equipment.  There are 

also indirect consequences associated with business interruption, lost tax revenues, lost sales, 

service interruptions, long-term health impacts, and lower property values in the impacted areas 

(Gardoni et al. 2016b; Nocera and Gardoni 2019a,b). 

Risk analysis of physical assets relies on representative digital twins.  A digital twin consists of 

a virtual representation of the physical assets for a specific analysis.  The virtual representation 

requires collecting and integrating data from multiple sources about relevant geographical and 

environmental conditions (such as where the assets are located), when and how the assets are 

used, how essential the assets are, what the interdependencies are, and what the assets’ physical 

and operational states are.  The required data depend on the analyses to be performed (e.g., 

predicting only direct costs has different data requirements than also predicting indirect costs.)  

The problem is that the collected data are typically unstructured and incomplete.  Current models 

lack a systematic approach for processing and augmenting data to account for assets where data 

are missing and fail to capture physical assets’ future developments and conditions (e.g., future 

expansions of infrastructure and the effects of aging and deterioration).  Creating the digital twins 

also entails deciding the boundaries and resolution of the virtual representation and selecting 

specific models for the intended analyses from multiple candidate models, each of different 
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fidelity and computational costs (Gardoni and Murphy 2020; Tabandeh et al. 2021a; Nocera and 

Gardoni 2021a).  In addition, the digital twin cannot entirely capture all the relevant aspects of 

reality.  Typically, missing or limited data about physical assets and several sources of uncertainty 

affect the prediction of consequences.  Uncertainty propagation, hence, must be included when 

creating the digital twins to define the likelihood of different scenarios.  There is a need for a 

systematic approach for creating such a probabilistic virtual representation of physical assets. 

Physical assets can be subject to multiple hazards during their service lives.  Significant 

attention has been paid to the seismic risk of earthquake main shocks.  However, earthquake 

main shocks are typically followed by a sequence of aftershocks occurring shortly after the main 

shock, well-before any repairs and recovery can be implemented.  Damage sustained from a 

significant main shock makes physical assets more vulnerable and more likely to collapse with a 

small aftershock (Kumar and Gardoni 2014; Hu et al. 2018).  The spectrum of hazards is also 

expanding; hurricanes and wildfires have been occurring more frequently with significantly 

increasing losses.  Different hazards may interact with one another (Gardoni and LaFave 2016).  

For example, the likelihood of landslides and flooding increases in regions previously impacted 

by wildfires (e.g., Kousky et al. 2018; Raymond et al. 2020).  Risk analysis of physical assets 

distributed over a large area (e.g., infrastructure and building portfolios) requires modeling the 

spatial extent of the hazards’ impact.  When modeling the temporal and spatial evolutions of 

hazards, data scarcity poses a significant challenge.  Extreme events such as earthquakes, 

hurricanes, and wildfires are, by definition, rare; hence, accurate modeling of their intensity 

measures cannot solely rely on recorded data from past events.  In addition, climate change is 

making data from past events less informative.  The past is not always a reliable predictor of the 

future.  The current approaches used in catastrophe modeling usually rely on fully physics-driven 

hazard models (e.g., Grenier et al. 2020).  However, fully physics-driven models are 

computationally intensive and require many input data that are difficult to obtain and uncertain.  

In turn, these input data introduce significant uncertainties in model predictions. 



 

 
Copyright 

2021 MAE Center at the University of Illinois at Urbana-Champaign               8 
 

The state of physical assets and their level of interdependencies control the spatial extent of 

hazard-induced damages and determine the duration of post-disaster disruptions to the services 

they provide to businesses and communities (Sharma et al. 2020a; Iannacone et al. 2021; Nocera 

and Gardoni 2021b).  The accumulation of damages due to aging and deterioration processes 

(like corrosion) and past extreme events like earthquakes, hurricanes, or wildfires makes physical 

assets increasingly vulnerable to future hazards if no or only partial restoration is implemented.  

The increased vulnerability makes the asset more susceptible to severe damages, prolongs its 

post-disaster recovery, and increases the chances of extensive reduction or loss of services 

provided by the asset (Jia et al. 2017; Sharma et al. 2018; Iannacone et al. 2021). 

A realistic risk assessment also requires capturing the effects of improvement strategies such 

as maintenance, repair, retrofit, and recovery activities (Jia et al. 2017; Iannacone et al. 2021).  

This is key to encouraging organizations and communities to proactively embrace the actions that 

will make them less vulnerable to risk.  As a result, insurance will be more available and affordable 

in high-hazard areas.  In addition to the temporal changes in physical assets, their spatial 

interdependencies also play a significant role in risk analysis (Guidotti et al. 2016; Sharma et al. 

2019, 2020a,b).  The collection of different physical assets forms an interdependent system 

whose components interact with one another and with hazards (Sharma and Gardoni 2019, 

2021).  For example, electric power transmission lines that traverse heavily forested areas can 

trigger wildfires.  In turn, power outages due to wildfires or preventive power shutoff can 

significantly affect businesses and other infrastructure that rely on provided services (Nocera and 

Gardoni 2019a,b).  However, current modeling, design, maintenance, recovery, financing 

principles, and regulatory standards usually focus on physical assets in isolation and do not 

consider hazards’ interactions and their combined effects on the physical assets’ time-varying 

vulnerability. 
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MAE Center’s approach to risk analysis of physical assets 

Risk analysis starts with data collection and creating a digital twin of reality - a fundamental step that controls 

all the subsequent analyses.  The developed physics-based models for physical assets and different hazards are 

part of the creation of the digital twin.  A significant challenge in modeling the impact of rare events is the 

scarcity of recorded data.  The scale of physical assets, specifically the interdependent infrastructure, also makes 

it impossible to use experimental data.  The MAE Center approach to the data scarcity challenge has two aspects.  

First, the developed approach has a hierarchical structure that leverages models at levels at which data are more 

available.  Second, at lower levels of the hierarchy, physics-based models are developed that integrate first 

principles (i.e., rules of physics and mechanics) with the more available data.  The developed physics-based 

approach facilitates updating models incorporating the effects of deterioration, repair, maintenance, and 

recovery.  The digital twins coupled with physics-based models allows us to generate incurred losses maps under 

different hazard scenarios and at different times during physical assets’ service lives.  Physics-based models can 

be updated based on data from historical events.  We use such data to verify the developed models and update 

them to improve their future predictions. 
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The MAE Center at the University of Illinois at Urbana-Champaign developed a rigorous 

approach for risk analysis of physical assets subject to multiple hazards.  The approach accurately 

predicts the consequences of damages to physical assets and their spatiotemporal variabilities 

for risk-informed decisions.  This paper focuses on the three general areas that represent current 

research gaps in the risk analysis of physical assets, namely, the development of a systematic 

approach to creating digital twins of physical assets, the modeling of the spatiotemporal 

evolution of hazards, and the modeling of the time-varying vulnerability of interdependent 

physical assets.  The paper presents the significance of these gaps and how the MAE Center 

approach has addressed them.  The rest of the paper is organized into five sections.  To provide 

context, Section 2 gives a brief overview of insurance risk assessment.  Section 3 presents the 

current gaps in the risk analysis of physical assets.  Section 4 explains the developed MAE Center 

approach to address the current gaps.  Finally, the last section summarizes the paper. 

2. Insurance Risk Assessment 

Insuring physical assets subject to natural hazards has traditionally focused on structures and not 

infrastructure.  However, there is a rising concern and motivation for risk-informed infrastructure 

management (Tonn et al. 2021).  Some insurance policies cover the losses incurred by individuals 

or businesses due to the cascading effects of loss of infrastructure services (NAIC 2020).  So, 

considerations might also be given to insured infrastructure.  This section discusses essential 

requirements for insurance risk analysis that are valid for both structures and infrastructure. 

2.1. Determining the value at risk 

Determining the value at risk is based on the valuation of the inventory of the assets exposed to 

the considered hazards.  It requires the inventory of the assets, the valuation of the assets, and 

the hazard exposure footprint. 

Some geographical boundaries usually define the extent of exposed inventory for risk 

analysis.  Different stakeholders may be interested in different regions of interest.  For example, 
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a government may define the region of interest within certain political or mapped geographic 

boundaries (such as territories or counties), while a business such as an insurance company may 

define the region of interest as an area in which it underwrites insurance coverage.  Creating an 

inventory for analysis requires collecting data (sometimes, but not always, publicly available) and 

generating data by inference from different sources or generating synthetic data (Boakye et al. 

2019; Sharma et al. 2020 a,b) to supplement the existing data.  Because the inventory and 

operational details of physical assets can be misused, data collection and use must follow privacy 

laws and laws governing strategic assets’ security.  Data availability, types, and structures might 

vary from place to place, even within the United States. 

Once we have defined the region of interest and created the assets’ inventory, the next step 

is to assign a value to each asset.  In general, such valuation may differ depending on the type of 

stakeholder and intended analyses.  In the insurance industry, monetary or financial risk 

measurement is the most common form of valuation (Grenier et al. 2020).  Outside the insurance 

industry, valuation in terms of impact on people’s well-being has also been used (Murphy and 

Gardoni 2006; Gardoni and Murphy 2020).  When using a monetary or financial measure, we 

assign an economic value to each element in the inventory.  The value maybe the present value 

or a replacement cost of the physical asset.  Discounting processes such as depreciation and 

present net worth may also be relevant if the economic value is present value rather than 

replacement cost (Gardoni et al. 2016b). 

The final step is to identify the subset of the inventory exposed to a hazard in specific 

scenarios.  Hazard exposures can be direct or indirect due to cascading effects (e.g., propagation 

of damages from other assets that are directly damaged, or propagation of disruptions through 

supply chains.)  However, most physical damages are due to direct exposure to hazards.  Natural 

hazards usually feature specific spatiotemporal patterns.  The footprint can be from a past event 

for validation or from a hazard model that creates probable hazard scenarios for future events’ 

predictions. 
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2.2. Determining the insured losses 

Once we have the inventory and value at risk, we can calculate the losses by combining the hazard 

intensity information at each location with the vulnerability of each asset to the hazard intensity.  

The inventory must contain additional data for each asset to determine insured losses.  Typical 

data include the physical and geometric attributes that determine the vulnerability of each asset 

to specific hazards.  Examples of such attributes for buildings include year built, construction 

type, number of stories, and occupation type.  If the functionality and cascading impacts on 

consumers and businesses are also of interest, the inventory must contain information regarding 

the operational characteristics of the physical assets.  Examples of such operational 

characteristics for potable water infrastructure include the consumption rate and pattern, 

working pressure and velocity, tanks and pumps hydraulic properties. 

Since structures and infrastructure components are part of a system, their damages may 

propagate with cascading effects across the system.  We can account for the propagation of 

damages by analyzing the operations of structures and infrastructure and modeling the loss or 

reduction in their functionality.  Using the functionality, we can calculate two types of losses, i.e., 

the loss due to damage propagation and the opportunity cost of unavailable services. 

Financial losses may also occur due to liability.  The damage to the assets owned by one entity 

may result in damage to other public or private properties.  The magnitude of loss in liability may 

be more severe and more challenging to predict than the direct damage.  For example, Pacific 

Gas and Electric Company (PG&E) suffered enormous financial loss when found liable for starting 

wildfires and causing property damage and loss of life.  The company was found guilty of causing 

84 deaths and agreed to pay $13.5 billion to people who lost their homes and businesses from 

wildfires during the 2017 and 2018 wildfires, which led to PG&E filing for bankruptcy protection 

(Brickley 2019; Penn and Eavis 2020).  Such losses can be predicted by considering the 

interdependencies of systems subject to multi-hazard scenarios (Guidotti et al. 2019; Gardoni 

2019; Sharma and Gardoni 2021). 
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Finally, the lack of services may lead to cascading impacts on dependent individual businesses 

and whole economic sectors.  Such losses for individual companies may be insured under 

additional coverage, such as contingent business interruption insurance (Nocera and Gardoni 

2019a,b). For example, the recovery of power may take several days after the hazard occurrence, 

and a business may lose production capacity due to the lack of power. A business may also lose 

demand if the consumers relocate or change their consumption patterns due to the hazard 

impact. 

3. Current Gaps 

The risk analysis of physical assets presents several challenges and research opportunities.  The 

MAE Center has been working on tackling several of these challenges.  This section provides an 

overview of some of the challenges; the following section presents how the MAE Center has 

addressed them by improving state-of-the-art risk analysis of physical assets. 

Accurate risk analysis relies on an equivalent digital twin of physical assets’ reality.  There are 

several challenges in creating the digital twins of physical assets, which are either overlooked in 

current research or addressed in an ad hoc manner.  Significant challenges include 1) dealing with 

missing, incomplete, and unstructured data about physical assets characteristics and their 

operating conditions; 2) the definition of digital twins’ boundaries to accurately capture direct 

damages to physical assets, their functionality losses, and indirect losses due to cascading effects, 

3) the selection of digital twins’ spatial and temporal resolutions for reducing the computational 

cost while maintaining the desired level of accuracy for intended analyses, and 4) the selection 

of computational models from multiple candidate models subject to available computational 

resources and the desired accuracy level. 

An additional challenge is developing an accurate hazard model that provides the hazard’s 

intensity at each exposed asset.  Depending on the hazard, several types of models can be used 

for developing hazard intensity maps, such as high-fidelity simulation of the hazard physics or 

statistical models based on past data and limited simulations of physics-based models.  The high-



 

 
Copyright 

2021 MAE Center at the University of Illinois at Urbana-Champaign               14 
 

fidelity simulations of the hazard require a large amount of data and computational resources.  

However, such models can generate accurate hazard maps only if the input data are known with 

high certainty.  On the other hand, statistical models require fewer input data and computational 

resources at the cost of higher model uncertainty.  Another gap in current approaches for risk 

analysis is the unavailability of spatiotemporal models that can provide high-resolution results in 

the region of interest with reasonable accuracy and manageable computational cost (Contento 

et al. 2019a,b, 2020). 

The last challenge is related to the time-varying vulnerability of interdependent physical 

assets.  The state of physical assets at the time of the occurrence of a hazard and their level of 

interdependencies determine the extent of damages to these assets and the following cascading 

disruptions.  Typical vulnerability estimates are time-invariant.  However, physical assets 

deteriorate during their service lives due to routine use, an aggressive operating environment, 

and past extreme events.  Deteriorations are an important concern in risk analysis since they can 

significantly increase the vulnerability of physical assets.  Deteriorations are also highly uncertain 

and not easily detectable unless extensively developed.  By the time the deterioration becomes 

visible, a substantial portion of the physical asset’s service life has already been depleted, and 

costly repair or replacement would be inevitable for continued operation.  In the absence of a 

proper account of deterioration, the errors in estimating the vulnerability of physical assets (and 

in turn of their damage and recovery times) can be significant (Choe et al. 2009, Kumar and 

Gardoni 2012, 2014a,b, Gardoni 2017).  The states of physical assets may also vary due to various 

maintenance, repair, and recovery activities (Kumar et al. 2015; Jia et al. 2017; Jia and Gardoni 

2018; Sharma et al. 2020).  Interdependencies among physical assets can further amplify already 

increased vulnerabilities due to cascading effects.  Inadequate maintenance and recovery 

preparedness (possibly due to the lack of information about physical assets’ actual state) can 

result in hazard consequences that go far beyond the expected damages and a slower recovery 

(Ayyub 2014; Gardoni 2019; Nocera et al. 2019a).  A realistic risk analysis of physical assets 

requires models to predict their time-varying vulnerabilities, hazard-induced damages, and 

physical and service recovery. 
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4. Addressing the Current Gaps 

4.1. Virtual representation of physical assets 

Creating a virtual representation of physical assets begins with collecting and integrating data 

about structures and infrastructure from multiple sources, such as utility companies, insurers, 

government organizations, published research, and social media (Boakye et al. 2019; Sharma et 

al. 2021).  The type, amount, and structure of required data depend on the intended analyses 

and the physical quantities of interest.  For example, if the value at risk is of interest, data 

collection can be limited to the region of interest impacted by relevant hazards and include the 

number of physical assets of different types and their geolocations.  Instead, if infrastructure 

functionality and cascading effects on people and supported businesses are of interest, data on 

operational attributes are also needed. 

Raw data collected from different sources are typically unstructured and incomplete.  As a 

result, the data need to be processed and synthetically enhanced to create a complete virtual 

representation of reality (Boakye et al. 2019).  We use data mining and big data analytics to 

process unstructured data and extract structured information for use in the intended analyses. 

For the treatment of incomplete data, we generate representative data using both novel 

methodologies and best industry practices.  Examples include the generation of synthetic data  

Creating the virtual representation requires deciding the boundaries and modeling the 

resolutions of structures and infrastructure, capturing their interdependencies, and selecting 

models for specific analyses.  For example, the definition of the footprint of infrastructure 

typically depends on the following four key factors: 

• The type of information of interest ( physical damage or functionality analysis); 

• The existence of easily recognizable physical boundaries and the possibility to model the 

boundary conditions; 
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• The existence and location 

of strategic elements need 

to be included, like 

generation nodes 

(depending on the purpose 

of analyses); and 

• Modeling of damage 

propagation among 

physical assets. 

Once the footprints of the 

structures and infrastructure 

are defined, we need to define 

their modeling resolutions.  For 

example, modeling 

infrastructure at different 

resolutions affects our ability to 

capture the spatial variability of 

hazards’ impact on 

infrastructure.  A detailed 

representation of 

infrastructure requires a 

significant amount of input 

data and high computational 

costs.  In contrast, a simplified 

representation of 

infrastructure (i.e., a skeletonized network) requires less detailed input data and has lower 

computational costs.  However, the adoption of a skeletonized network may affect the accuracy 

Virtual Representation of Hazards and 

Infrastructure in Miami-Dade County, FL 

In this example, the region of interest is defined by the political 

boundaries of Miami-Dade County, Florida.  We created the digital twin 

of the power, communications, and transportation in this region of 

interest.  We created the inventory that includes geolocation of 

physical assets, type of asset, quantity, operational attributes, and 

monetary value.  We considered a storm surge hazard scenario due to 

a hurricane.  We estimated the water height at each location as 

discussed in Section 4.2.  The figure below shows a 3D of the typical 

details we created over the entire region of interest. 

Power and Communications  

Storm surge Height  

Transportation 
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of the results.  A skeletonized network may be unable to capture the changes over time and space 

in the relevant quantity of interests and the cascading effects due to interdependencies among 

infrastructure (Guidotti et al. 2019). 

We developed a rigorous 

approach to select the appropriate 

modeling resolution of 

infrastructure (Nocera and Gardoni 

2021a).  The developed approach 

addresses the tradeoff between 

accuracy and simplicity when 

modeling infrastructure.  The 

developed approach uses 

information from the topology of 

the infrastructure model to obtain 

equivalent networks.  The 

equivalency depends on the 

modeled infrastructure, type of 

analysis, and information of interest.  

For instance, in a connectivity 

analysis for a transportation system, 

links in an equivalent network can 

have an equivalent length 

representing the total length of the 

simplified roads.  Similarly, considering a flow analysis for a power system, edges in an equivalent 

network can have equivalent operational attributes, such as electrical resistance and impedance.  

Furthermore, we developed metrics to estimate the accuracy of equivalent networks.  The 

developed metrics measure the level of agreement between estimates of the quantities of 

interest computed using different network resolution levels.  The information from such a metric 

Infrastructure Value at Risk of Storm Surge in 

Miami-Dade County, FL 

We used the digital twins, the hazard intensity measures for the 

selected scenario, and the monetary values of each asset to 

estimate the value at risk of storm surge in the region of interest.  

The table below shows a subset of the infrastructure inventory 

that falls within the defined footprints of the storm surge.  The 

rates are typical reconstruction costs and used for illustration 

purposes only.  We calculate the total infrastructure value at risk 

subject to storm surge to be above 10 billion dollars. 

 

Asset Unit Quantity Rate1  Value2  

Highway and 
interstate 

Lane miles 507 4.00 2,028 

Local Lane miles 4,178 1.50 6,267 
Thoroughfare  Lane miles 587 2.00 1,174 
Unpaved Lane miles 129 1.00 129 
Bridges Lane miles 18.5 40.0 740 
Tunnels Lane miles 3 10.0 30 
Power 
transmission 

Miles 277 2.00 554 

Power 
distribution 

Miles 3,906 0.50 1,953 

Power plants Number 2 500.0 1,000 
Power 
substations 

Number 38 2.00 76 

Communication 
antennas and 
towers 

Number 86 0.20 17.2 

Total 13,968.2 
1The rate is in million $ per unit, for illustration only 
2The value is in million $ 
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is used to inform if a skeletonized network is sufficiently detailed or oversimplified.  In the 

developed approach, the selection of the modeling resolution is iterated until the desired 

tradeoff among accuracy, simplicity, and computational efficiency is achieved. 

4.2. Spatiotemporal evolution of hazards 

This section presents physics-based probabilistic models for several hazards.  The models address 

the data scarcity problems in modeling rare events by combining first principles (i.e., rules of 

physics and mechanics) with data from multiple sources.  For short-term predictions, these 

models can help optimize resource management (both human and economic) in the aftermath 

of hazards.  For long-term predictions, these models can help develop suitable strategies for 

updating insurance premiums (Contento et al. 2017) and develop financial instruments such as 

catastrophe bonds (Hofer et al. 2019, 2020). 

Hazard models must capture the spatiotemporal variabilities of intensity measures to 

determine the impacts on physical assets.  For a given scenario, the hazards’ footprint (defined 

as the region where physical assets have non-zero failure probability) could be smaller than the 

footprint of physical assets, yet it should generally contain the source of the hazard.  However, 

the hazard model’s footprint (defined as the region over which we need to estimate hazards’ 

intensity measures) needs to be at least as large as the footprint of physical assets.  The resolution 

of the hazard models affects the ability to capture the spatiotemporal variabilities of hazards’ 

intensity measures over physical assets’ footprint, which is critical for modeling damages to 

physical assets distributed over a large area.  Considering a seismic scenario as an example: in a 

region within 30-50 km from the earthquake source (i.e., in the near-field of the seismic source), 

directivity effects may induce higher values of intensity measures along specific directions, or the 

shape of the basin and the specific topography may result in amplification effects.  These factors 

limit the accuracy of traditional ground motion prediction equations.  Therefore, the use of more 

accurate models such as three-dimensional physics-based models (e.g., Stupazzini et al. 2019) 

may be needed to capture these aspects. 
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4.2.1. Earthquakes 

An accurate prediction of earthquake intensity measures is critical to the seismic risk analysis of 

physical assets.  Earthquake main shocks are usually followed by a sequence of aftershocks of 

relatively significant magnitudes and a high occurrence rate that gradually decays over time (Utsu 

and Ogata 1995).  Therefore, physical assets might be subject to a sequence of shocks, not only 

a single main shock.  The increased vulnerability of physical assets in the aftermath of a main 

shock further highlights the significance of capturing temporal aspects in seismic risk analysis 

(Yeo and Cornell 2005; Kumar and Gardoni 2012).  The estimates of earthquakes’ intensity 

measures generally depend on the characteristics of seismic sources, the travel paths of seismic 

waves, and local site conditions.  In a sequence, the main shock and its following aftershocks 

occur spatially and temporally close to each other and, thus, share similar seismic characteristics 

(Hu et al. 2018).  Mathematically, such similarities introduce spatial and temporal statistical 

dependence among the estimates of earthquake intensity measures (Hu et al. 2018).  Therefore, 

accurate seismic hazard analysis requires modeling the joint probability distribution of 

earthquake intensity measures in main shock-aftershocks sequences. 

The database of recorded earthquake ground motions for main shock-aftershocks sequences 

is sparse and lacks required variabilities for many regions and assessment scenarios.  Therefore, 

there has been increasing interest in generating synthetic ground motions that integrate results 

from seismological and geotechnical models with empirical data (Hu et al. 2018).  Alternatively, 

Ground Motion Prediction Equations (GMPEs) provide selected information about earthquake 

ground motion intensity measures for a given earthquake and can be coupled with hazard 

functions that define the likelihood of an earthquake of a certain intensity (Kumar and Gardoni 

2013).  Information from the GMPEs captures specific characteristics of earthquake ground 

motions that might be relevant to the seismic risk assessment of specific physical assets, such as 

the peak ground acceleration at a site and the spectral accelerations at different natural periods.  

Current GMPEs represent a set of univariate probabilistic models that partially capture the spatial 

statistical dependence of individual intensity measures at different sites.  The literature includes 
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supplementary models that capture statistical dependence among 1) different intensity 

measures at a given site and 2) vectors of intensity measures at different sites.  Likewise, we need 

to generalize current GMPEs to model the temporal evolution of earthquake intensity measures 

in main shock-aftershocks sequences.  This extension generally requires GMPEs for the intensity 

measures of earthquake aftershocks and modeling the temporal statistical dependence among 

the intensity measures of 1) each main shock and its aftershocks, and 2) different aftershocks in 

the same sequence (Hu et al. 2019). 

We developed mathematical formulations to generate synthetic ground motions and predict 

their intensity measures in main shock-aftershock sequences (Hu et al. 2018, 2019).  The 

developed stochastic model for synthetic ground motions captures the spatiotemporal evolution 

of main shock-aftershock sequences in a two-step process (Hu et al. 2018).  The model first 

generates a scenario that includes realizing the magnitudes, locations, and occurrence times of 

main shock-aftershock sequences (see Figure 1).  For each main shock or aftershock event, the 

model then generates representative synthetic ground motions for specific seismic 

characteristics and site conditions.  Additionally, we developed a mathematical formulation to 

model the joint probability distribution of the vector of intensity measures and their evolution 

over time in main shock-aftershock sequences (Hu et al. 2019).  The developed joint probability 

distribution integrates the developed sub-models for main shocks, aftershocks, and their 

statistical dependence.  For main shocks, we use current GMPEs to estimate the vector of 

intensity measures, whereas, for aftershocks, we develop a set of new GMPEs.  The developed 

GMPEs for aftershocks capture 1) the nuances in modeling the intensity measures of aftershocks 

beyond a single correction term in current GMPEs, and 2) the temporal statistical dependence 

among intensity measures of aftershocks in the same sequence. 
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Figure 1: Generated main shock-aftershocks sequences scenario that includes the realized spatial distribution of 
the shocks (left plot) and their time-varying magnitudes as a function of time elapsed since the occurrence of the 

main shock (right plot) (Adapted from Hu et al. 2019) 

 

4.2.2. Storm surges 

Hurricane hazards pose a severe threat to large portions of the coastal areas of the United States.  

Among the different aspects of the hurricane hazard, storm surge is responsible for a significant 

portion of the damage to physical assets and has a profound economic impact.  Storm surge is 

an abnormal rise of water generated by a storm above the astronomical tide.  In the last decades, 

hurricanes such as Ike in 2008 and Katrina in 2005 resulted in devastating damage to physical 

assets due to storm surges.  The damage to physical assets from Ike is estimated at $24.90 billion, 

while damage to physical assets from Katrina is estimated to be higher than $108 billion.  The 

effects of climate change may increase the frequency and magnitude of extreme weather events 

like hurricanes (Murphy et al. 2018; Contento et al. 2019b).  Likewise, the shifts of population 

and economic development to hazard-prone coastal areas of the United States and the 

continuously increasing population density increase the exposure conditions.  Consequently, the 

related damage to physical assets and the related economic losses may further increase in future 

hazard scenarios (Contento et al. 2017; Murphy et al. 2018). 

Storm surge is primarily caused by the hurricane’s strong winds and geomorphological 

characteristics, with a minimal contribution from the low pressure of the storm.  The wind 

circulation around the eye of a hurricane produces a vertical circulation in the ocean.  In shallow 
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waters near the coast, the horizontal circulation is disrupted by the ocean bottom; thus, the 

water rises and goes inland.  Due to many factors in play, even a low-intensity hurricane can 

generate a high surge.  For example, Hurricane Ike, a Category 2 hurricane on the Safir-Simpson 

scale, generated a storm surge of several meters in height.   

The models currently available use shallow-water equations to model the hydrodynamics of 

the storm surge.  Examples include the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) 

model (Jelesnianski et al. 1992) and the Advanced Circulation (ADCIRC) model (Westerink et al. 

1994).  However, models like SLOSH and ADCIRC are computationally inefficient, and the 

hardware required to support the computational burden is not commonly available to perform 

probabilistic analyses. Their computational inefficiency also makes it impossible to develop real-

time predictions as hurricanes unfold. 

We developed physics-based models to estimate the time evolution of storm surges 

(Contento et al. 2020).  The developed models provide an estimate of the probability of a location 

being flooded, as well as estimates of the storm surge heights if a location is predicted to be 

flooded.  The developed models capture the fundamental physics of the phenomena, expressing 

the storm surge’s dependence on factors such as wind speed, central pressure, the distance of 

the hurricane eye to the location, bathymetric slope, and convexity of the coastline.  

Furthermore, the flexibility of the developed formulation enables using data from both high-

fidelity simulations and historical records.  The models can be trained with records related to the 

actual climate and then updated to consider different climate change scenarios.  Such models 

are suitable for probabilistic analyses because the estimates are obtained with a limited 

computational burden compared to models like SLOSH or ADCIRC.  Specifically, the developed 

models can be used for both long-term and short-term predictions.  For the long-term 

predictions, the models predict storm surge for a given climate change scenario.  For the short-

term predictions, the models can be used to provide real-time estimates of storm surge as the 

hurricane unfolds.  Figure 3 shows a schematic description of the obtained results from such real-
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time predictions in terms of the evolution of storm surge height in a region of interest.  The figure 

shows three snapshots of the flooded region at evolving times 𝑡1, 𝑡2, and 𝑡3. 

 

 

   
time 𝑡1 time 𝑡2 > 𝑡1 time 𝑡3 > 𝑡2 

Figure 2: Schematic description of the predicted storm surge height over time in a region of interest 

 

The predictions can be updated in real-time as new forecasts and additional surge records at 

different locations become available over time.  The model updating allows us to tailor the 

generic probabilistic model to a specific region and hurricane.  Figure 3 illustrates the schematic 
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of the modeling approach in the case of short-term predictions (Contento et al. 2021).  Figure 3a 

shows the initial prediction of the storm surge height at an example location.  Figure 3b shows 

the schematic of the updated prediction at the same location as the hurricane unfolds, i.e., as 

the position of the hurricane (at the time of the updating), its expected track changes, and new 

data become available. 

 

 

Figure 3: Schematic of the short-term storm surge height predictions as the hurricane unfolds (Adapted from 
Contento et al. 2021) 

 

As an example, we made long-term predictions assuming the worst-case scenario for climate 

change (8.5 RCP scenario) (Contento et al. 2019).  We tailored the models for a specific region in 

North Carolina (i.e., the area surrounding the Tar River and the Pamlico River).  For each location, 

Predicted storm height  
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we predicted the probability of being flooded and the corresponding storm surge height.  As an 

example of updating short-term predictions, we simulated the storm surge from Hurricane 

Michael, assuming an exact hurricane forecast.  Updating the model even after a few hours since 

its approach to the United States coast leads to significant accuracy (Contento et al. 2021). 

4.2.3. Wildfires 

Wildfires are a growing concern with significant annual losses.  A recent series of wildfires in 

Northern California became one of the deadliest and most destructive fires on record, killing at 

least 88 people, burning about 14,000 residences and 530 commercial structures, and causing 

over 12 billion dollars of total insured losses (III 2019).  The changes in the frequency and intensity 

of wildfires and exposure conditions contribute to the growing trend of insured losses.  Significant 

contributing factors include climate change, rapidly growing development into the wildland-

urban interface (i.e., intermix of structures and infrastructure with fire-prone vegetation), and 

lack of wildfire suppression policies.  Most catastrophic wildfires are started and sustained under 

extreme weather conditions, with high daytime temperatures, strong changing surface winds, 

and dry conditions.  Future perspectives of climate change tend to favor extreme drought and 

alter precipitations, leading to longer fire seasons (Allen and Ingram 2002; Rochoux 2014; Kousky 

et al. 2018).  On the exposure side, developments in the wildland-urban interface increase values 

at risk as well as protection costs due to the wildfire suppression (Gan et al. 2014).  In turn, the 

accumulation of vegetation fuels on the ground due to such suppression efforts can increase 

likely wildfires’ intensity (Gan et al. 2014). 

Wildfires propagation features a complex behavior that integrates multiple physical 

processes across different scales of length and time (Tabandeh et al. 2021).  In the governing 

physical processes, the vegetation scale characterizes biomass fuels, the flame scale 

characterizes combustion and heat transfer processes, the topographical scale characterizes 

terrain and vegetation boundary layer, and the meteorological scale characterizes atmospheric 

conditions (Rochoux 2014).  Figure 4 shows a schematic description of the obtained results from 

the wildfire propagation model.  The figure shows three snapshots of the burned region at 
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evolving times 𝑡1, 𝑡2, and 𝑡3.  As shown in the figure, wildfires generally feature a front-like 

geometry that propagates into unburned vegetation.  Vegetations ahead of the burning zone 

receive a significant heat flux from the flame, leading to increased temperature.  The intensity of 

the heat flux decreases with distance from the flame.  The direction and speed at which wildfire 

propagates result from interactions among different physical processes, namely the pyrolysis 

processes at the vegetation scale, combustion and flow dynamics at the flame scale, and 

atmospheric dynamics and chemistry meteorological scale.  Firebrands’ advection also 

contributes to wildfire propagation by spotting effects, where embers are lofted from fire and 

transported up to miles downwind. 

 

   
time 𝑡1 time 𝑡2 > 𝑡1 time 𝑡3 > 𝑡2 

Figure 4: Schematic description of the predicted wildfire propagation in a region of interest  
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We developed a mathematical formulation to model wildfire propagation using the level-set 

method, a computational method to track moving fronts (Tabandeh et al. 2021).  The level-set 

method (Osher and Sethian 1988) relies on an implicit representation of fire fronts whose 

dynamics are governed by a Hamilton-Jacobi partial differential equation.  The governing 

equation captures the dependence of the propagation speed and direction on front geometrical 

properties such as its gradient and curvature, vegetation properties, weather conditions, and 

terrain topography.  Specifically, we integrate available empirical models that capture the 

dependence of the propagation speed and direction on the governing factors into the level-set 

equation.  These empirical models are calibrated based on general data outside the formulated 

level-set equation.  In specific propagation cases, we may update these models using specific 

data at different scales.  In addition to the typical advective propagation mode, the developed 

mathematical formulation captures the contributions of turbulent hot-air transport and fire-

spotting in wildfire propagation.  The obtained results are affected by various sources of 

uncertainty in the model inputs, including boundary and initial conditions, vegetation properties, 

wind intensity and direction, model parameters, and possible errors in numerical solutions.  To 

account for these sources of uncertainties, we developed a differential equation that governs the 

evolution of the probability distribution of fire fronts.  We also developed a novel numerical 

method to compute the probability distribution. 

4.3. Time-varying vulnerability of interdependent systems 

We developed an approach to model the time-varying vulnerability and resilience of 

interdependent physical assets while capturing their deteriorations (Iannacone et al. 2021).  The 

developed approach has a hierarchical structure with three primary levels (e.g., material, 

structure, infrastructure).  First, we developed mathematical models for the time-varying 

processes affecting interdependent physical assets.  These models capture the effects of external 

drivers, including gradual deteriorations (e.g., due to corrosions), shock deteriorations (e.g., due 

to past extreme events), or maintenance, repair, and recovery.  Such effects cause 

spatiotemporal changes in the variables that define physical assets (e.g., variables that define 
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geometry, boundary 

conditions, and material 

properties, which are 

collected data in creating 

the digital twin.)  Second, we 

developed mathematical 

models to predict the time-

varying vulnerability of 

interdependent physical 

assets (Gardoni et al. 2002; 

Choe et al. 2008, 2009; 

Kumar and Gardoni 2014; 

Iannacone and Gardoni 

2018; Nocera et al. 2019b; 

Xu and Gardoni 2020a).  For 

this purpose, we model 

infrastructure as a collection 

of interdependent 

networks.  For example, we 

developed a structural 

network to model a given 

infrastructure’s vulnerability 

and a flow network to model 

its functionality (details can 

be found in Sharma et al. 

2020).  We then obtained 

performance measures for 

each network and an 

Time-varying Resilience Analysis of Water 

infrastructure in Seaside, OR 

We implemented the developed formulation to model the time-varying 

vulnerability of a realistic potable water infrastructure subject to 

earthquake excitations (Iannacone et al. 2021).  The deterioration and 

damage models developed for water pipelines capture the corrosivity of 

soil, the geometry and material properties of the pipelines, hydraulic flow 

properties, and hazard intensity measures.  The recovery model consists 

of a detailed schedule for the repair or replacement of damaged pipelines 

while considering the required crews, resources, and other scheduling 

constraints, as well as high-fidelity hydraulic flow analyses.  The example 

highlights the effects of spatially-varying exposure conditions and 

pipelines’ age on the vulnerability, functionality, recovery, and resilience 

of the potable water infrastructure.  The resilience maps in the bottom 

row show a schematic description of the recovery pace (temporal 

resilience) and spatial disparity among the recovery pace of different sub-

regions (spatial resilience).  Such effects cannot be investigated using the 

traditional risk analysis. 

 
Direct physical 

damage 

Cascading loss of 
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Measure of 

temporal resilience 
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aggregate performance measure for all interdependent networks.  Third, we define resilience 

measures based on the time-varying performance measures and use them to quantify physical 

assets’ ability to recover after disruptions (Iannacone et al. 2021).  These measures of resilience 

capture the spatiotemporal variations of the physical assets’ ability to recover.  The resilience 

measures consider the combined effects of deterioration processes, maintenance, repair, and 

recovery activities in evaluating physical assets’ damages due to hazards.  Experimental data on 

deterioration and recovery are usually available at the state variables level.  The developed 

formulation can incorporate such data to improve predictions at higher levels (i.e., up to the 

infrastructure level.)  Implementing the governing rules of physics and mechanics at each level 

of the developed approach improved the models’ accuracy and their applicability to assets with 

different characteristics. 

5. Summary and Conclusions 

The MAE Center at the University of Illinois at Urbana-Champaign developed a rigorous approach 

for risk analysis of physical assets subject to multiple hazards.  The approach accurately predicts 

the consequences of damage to physical assets and their spatiotemporal variabilities for risk-

informed decisions.  The approach provides information about direct losses due to hazard 

damages to physical assets and indirect losses due to cascading failures and the unavailability of 

the physical assets’ services.  This paper focused on the three topics that represent current 

research gaps in the risk analysis of physical assets, namely, the development of a systematic 

approach to creating digital twins of physical assets, the modeling of the time-varying 

vulnerability of interdependent physical assets, and the modeling of the spatiotemporal 

evolution of hazards.  The paper presented the significance of these gaps and how the MAE 

Center approach has addressed them. 

Risk analysis relies on the virtual representation of physical assets.  The paper presented a 

systematic approach for creating such a virtual representation, called digital twin, from collecting 

required data and generating synthetic data when data are missing and for future developments.  
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Specifically, the paper discussed issues related to defining the boundaries and modeling 

resolution when creating digital twins for specific analyses. 

The paper also presented rigorous mathematical models for the spatiotemporal evolution of 

hazards.  The paper discussed the modeling of sequences of aftershocks following a main shock 

for earthquakes, storm surges for hurricanes, and wildfires.  The paper presented models that 

capture the underlying physics of the phenomena and integrate empirical data when available.  

Specifically, for storm surges and wildfires, using historical data and climate change predictions, 

the models provide long-term predictions to guide planning for future years.  Using real-time 

data from unfolding events, the models provide short-term predictions to optimize the 

management of resources needed in the aftermath of a hazard.  

The paper presented a physics-based formulation to model the time-varying vulnerability of 

physical assets while accounting for the effects of deterioration processes, repair, maintenance, 

and recovery activities.  The developed physics-based formulation combines first principles with 

various data sources to closely capture physical assets’ real conditions. 
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About the MAE Center 

The MAE Center develops new integrated approaches to predict the consequences of natural 
and anthropogenic hazards.  The MAE Center has been conducting interdisciplinary research to 
estimate damage and vulnerability at regional and national levels, and characterize different 
hazards. Through these activities, the Center has been supporting different stakeholders and 
societal interests. 

The MAE Center is at the forefront of risk research. The MAE Center uses understandings of the 
physics of the phenomena and the latest data analytics to develop the most comprehensive and 
realistic models for risk analysis considering multiple hazards including earthquakes, hurricanes, 
tornados, and wildfires.  

Risk analysis for natural and anthropogenic hazards is particularly challenging due to the rare 
occurrence of extreme events and because of the complex processes of interaction of such rare 
events with the natural and built environment to produce a societal impact.  

The information generated by the MAE Center allows for state‐of‐the‐art informed decision‐ and 
policy‐making. 
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